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What is Physical Chemistry?

Physics of Chemistry

What is Thermodynamics?
THERMO - heat, energy
DYNAMICS - changes

Consider
PV =nRT
e Rewrite as: RT
n
P=——
%

What can cause P to change?
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e How do we describe the change if all three are
changing at once?

oP oP OP
dP = | — i -
(2) we(Z) (%) ar

e Note carefully the difference between 0 and d

e O describes the partial change due to the
change in a particular variable

e d describes the total change
e Some other ways of describing changes (useful
for numerical applications)
e A - a finite change

e 0 - an infinitesimal change



UNITS

Even when represented by a symbol, physical
quantities have units.
e Verification of units can help detect mis-
takes in a derivation.

P - force per unit area. The SI unit is the Pascal

(Pa).
e 1Pa=1Nm?2 1kgms_2m_2
e 1 Pa=1kg m! s™? (fundamental units)

V - volume
e m° (fundamental units)

n -number of moles
e mol (fundamental units)

R - Gas Constant
e 8314 J K ' mol™! =8314kgm? s 2 K}
mol !
e (1J=1%kgm?s? (fundamental units))
e (1J=1Pam?orl1Pa=1Jm?)

T K (fundamental units)
e temperature is on absolute Kelvin scale.
See page 3 of Winn.

UNITS ARE YOUR FRIENDS



EQUATIONS OF STATE

Definition (Winn p. 5.)

“An equation of state is the mathematical relation-
ship among the relevant thermodynamic variables of
an equilibrium system.”

e FExamples (from gas behaviour):

e Ideal Gas Equation of State

PV =nRT

e van der Waals Equation of State




THERMODYNAMIC VARIABLES

Intensive
Extensive
Relation to Equation of State

Description of Equilibrium

RECOMMENDED READING:

Chapter 1 Winn



COMPRESSIBILITY

e Ideal gas o
PV
J=—=1
T
e van der Waals
L, PV _ V. a
" RT V-b RIV
e Virial equation
PV B(T) C(T
TV B o
RT V vV

e THEREFORE:

Deviation from one of the value of Z, the com-
pressibility factor, is a measure of the nonideal be-

haviour of a gas.



A closer look at the virial equation:
e B(T) has units of volume
e C(T) has units of volume?.

e What would we expect temperature dependence
of B(T) to be?

e High T - repulsions important

e Low 1 - attraction important

The Boyle temperature and
the van der Waals equation:

e Consider the van der Waals equation of state
written in virial form:

a 1 b?
n <b RT) I
or.
PV B(T) C(T)
Z E _ = ]_ - — J— . o
=T + = + =3 +
where:
B(T)=b— — O(T) = b?



What is the temperature dependence
of B(T) for a van der Waals gas?

o If T is large, B(T) — b, which is positive.

e Repulsion accounts for most of the devia-
tion from ideal behaviour.

e If T is small, B(T') becomes negative.

a
B(T) = ——
(T) = — 7

e Attraction accounts for most of the devia-
tion from ideal behaviour.

e When B(T) = 0, the corresponding tempera-
ture is the Boyle temperature, T'g.

B(T):ozb—Rf_"FB
a
T = &
" Rb

e A physical interpretation of the Boyle tem-
perature is that temperature at which the
average attractive and repulsive forces are
balanced.



Dimensionless Scales

e For a van der Waals gas, the Boyle temperature,
T, allows us to define a dimensionless temper-
ature scale in terms of multiples of the Boyle
temperature.

a

B(T) =0=b— pr

e Dividing both sides of the equation by b gives:

B(T):l_ a :1—T—B
b RbT T

which means:

e that any temperature can be expressed as
a multiple of of the Boyle temperature, T'z;

e and that the second virial coefficient, B(T),
can be expressed as a multiple of the second
van der Waal’s parameter b.

e Dimensionless scales allow the convenient com-
parison of a number of different gases described
by the van der Waals equation.



In Figure 1.6 of your text, B(T)/b is plotted
against T'/Tg for the noble gases

From this plot we can see:
e how nonideal these gases are

e how well van der Waals works for these
gases.

More Dimensionless Variables

Consider a van der Waals gas. If we can scale
volume and pressure in a way similar to that
used for temperature, then we can use one equa-
tion or graph to represent the properties of
many different van der Waals gases.

We already have way to scale temperature T
with the Boyle temperature, 1T’

e Recall that T = a/Rb, i.e. a combination
of parameters that have the same dimen-
sions as temperature

e Our scaled temperature is:

~ T
T = —
Tp



e To set up scales for V and P, we will look for
combinations of parameters that have the
“right” dimensions.

e Consider first molar volume, V:

e The van der Waals parameter, b, also has
units of molar volume.

e Therefore our scaled dimensionless variable
1S:

72
V = —
b

e Now consider pressure, P.

: —2
e We note that the quantity a/V" has the
same dimensions as pressure.

e We need to replace V with something that
has the same units, in this case, b.

e Therefore our scaled dimensionless variable
1S:

Pb?
a

P =



e With
~ T T Rb

Tp a

we can now rewrite the van der Waals equation
in scale dimensionless variables:

~

- T 1
P:~—_~_
V-1 V2

e Thus we can represent all van der Waals gases
with this dimensionless equation.

e To obtain information for a specific gas, we
just need to undo the scaling with using the
values of a and b specific to that gas.

e Consider the van der Waal’s isotherms (Figure
1.7 page 22 Winn). Note:

e That the isotherms for the lower temper-
atures have a minimum and a maximum
while the isotherms for higher temperatures
have no minimum or maximum.

e That as temperature increases the maxi-
mum and minimum move closer together
until they meet at a point (called the crit-
ical point) above which the maximum and
minimum have disappeared.



e The critical point is characterized by the
critical temperature (T¢), the critical pres-
sure (Pc) , and the critical molar volume

(Ve) -

e Below the critical temperature, the van der
Waals curve has a region of positive slope,

(8]5 / 8‘~/>T, joining the maximum and the

minimum.
What is the physical significance of this?

e Note that the bulk isothermal compressibility is

defined as:
1 oV
K= —— | —
V \OP ),

e k is positive for all real substances.

e Therefore we have a region below T~ where
the van der Waals equation breaks down
because it gives a negative value for k.

e Consider first the van der Waals equation at T

e The critical point is mathematically an in-
flection point.



e Mathematical properties of an inflection point:
e First derivative is zero.
e Second derivative is zero.

e This means that we can write three equations in
three unknowns (P¢, Vo, Te) and solve for each
of the unknowns.

p-_t 1

V-1 V2
OP -T 2
o =0=="""1%
oV ) is V12V
(82]5> P
72 VT 1\ | T4
o2 ). . V12V



e To solve for (PC, VC,TC).

e Isolate T in the first and second deriva-
tives.

e Combine the resulting two equations and
isolate V.

e Substitute Ve into one of the equations and
evaluate T¢.

e Substitute f/c andj” o 1n the van der Waals
equation and get Pc.

e In scaled variables, this gives:

~ ~ 8 = 1
VC 37 C 277 C 97
e Undoing the scaling gives:
— 8a a
Ve=3b do=orppt 1o = omp

e The critical point variables, ( Pc ,_VC, Tc), pro-
vide us another way to scale (P,V,T).

e The resulting set of scaled variables are
known as the reduced variables, (p,v,t).

e Different gases described by the same set
of reduced variables are in corresponding
states.



e Figure 1.10 compares isotherms of compressibil-
ity in terms of reduced pressure.

e Something to try on your own (between now
and the first term test):

e Write the van der Waals equation in terms
of reduced variables.

HINT': Recall how we determined the van der Waals
equation in scaled variables ( i.e. substitutions and
cancellations).

Some useful properties of partial derivatives
(that we will be using)

e Consider some function z(x,y).

(5),- (%),

if z is a continuous function of x.

e Most thermodynamic functions are contin-
uous functions.



An application of this would be the evaluation
for a van der Waals gas of:

().

The Cyclic Rule

Another useful property of partial derivatives.

Again consider the function z(z,y). The cyclic

rule is:
Oz (9dy\ (0z\ _ |
oy)_ \0z/)_ \Ox ’ B

This in combination with the previous property
allows us to find one of the derivatives given the
other two.

An application of this would be the evaluation
for a van der Waals gas of:

(37),



The Chain Rule

e Consider function f(x1, ) such that
e v1=x1(y1,Y2)

® To = 96‘2(?/1,?/2)

e Then the chain rule is:
9f Y\ _
85131 Lo B
(ﬁ) (%) N (ﬁ) (%)
8y1 Yo 8:1:1 To 8y2 y1 8:1:1 To

e Consider the case where

$1:T, QZQZP, ylzT, y2:V

e Then the chain rule becomes:

(7).~ Gr), (), + (), (o),

e If f = P then this becomes:

= (ar), (&), (&), (&),



e From this the cyclic rule may be derived:

(ar), = (o), (5),
= (), (@), (),

State Functions and Path Functions

or

Consider a system initially at equilibrium in
state 1.

The system undergoes a change and comes to a
new equilibrium at state 2.

The value of a state function at state 2 is
independent of the path taken from state 1
to state 2.

The value of a path function at state 2 is
dependent on the path taken from state 1 to
state 2.



Exact and Inexact Differentials

An infinitesimal change on a path for a state
function between state 1 and state 2 is described
by an exact differential.

An infinitesimal change on a path for a path
function between state 1 and state 2 is described
by an inexact differential.

Consider some function z such that:

dz = fi(z,y)dx + fy(z,y)dy

where chosen arbitrarily are functional forms for
fz and f,. For example:

fo(z,y) = vy and f,(z,y) = 2°y°

Does there exist some function z(x,y) such that
dz is the total derivative?

e If there does, then z is a state function.

e If there does not, then z is a path function.



How to Test for State Functions
e If z is a state function, it must pass the cross
derivative equality test.

o If the state function z(z,y) exists then:

0 (02 _ (P2 _ 0 (0:\ (0%

or \O0y) \0x0y) Oy \ox) \Oyox

e Applied to dz = f,(x,y)dz+ f,(x,y)dy, the test
becomes whether:

ox oy

o Applied to dz = zydz + z2y*dy, we see that the
cross derivative equality test is failed because:

Oy _
oy
and ) o
8(37 Y ) _ 2wy2
ox

Therefore in this case z is a path function.



