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a b s t r a c t

Models that predict distribution are now widely used to understand the patterns and pro-

cesses of plant and animal occurrence as well as to guide conservation and management

of rare or threatened species. Application of these methods has led to corresponding stud-

ies evaluating the sensitivity of model performance to requisite data and other factors that

may lead to imprecise or false inferences. We expand upon these works by providing a rel-

ative measure of the sensitivity of model parameters and prediction to common sources of

error, bias, and variability. We used a one-at-a-time sample design and GPS location data

for woodland caribou (Rangifer tarandus caribou) to assess one common species-distribution

model: a resource selection function. Our measures of sensitivity included change in coeffi-

cient values, prediction success, and the area of mapped habitats following the systematic

introduction of geographic error and bias in occurrence data, thematic misclassification of

resource maps, and variation in model design. Results suggested that error, bias and model

variation have a large impact on the direct interpretation of coefficients. Prediction success

and definition of important habitats were less responsive to the perturbations we intro-

duced to the baseline model. Model coefficients, prediction success, and area of ranked

habitats were most sensitive to positional error in species locations followed by sampling

bias, misclassification of resources, and variation in model design. We recommend that

researchers report, and practitioners consider, levels of error and bias introduced to predic-

tive species-distribution models. Formal sensitivity and uncertainty analyses are the most

effective means for evaluating and focusing improvements on input data and considering

the range of values possible from imperfect models.

© 2007 Elsevier B.V. All rights reserved.

1. Introduction

Species-distribution models are becoming an important tool
for understanding ecological processes and patterns and for
guiding the conservation and management of plants and ani-
mals (Raxworthy et al., 2003; Fortin et al., 2005). Once an
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effective model is identified, results provide a measure of
the importance of ecological variables that correlate with
species distribution and in some cases abundance (Boyce and
McDonald, 1999). Also, model results can be applied to digital
spatial data to produce maps representing the likelihood of
species occurrence (Carroll et al., 2001). The absolute or rela-
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tive likelihood of occurrence then serves as a metric to rank
habitats for conservation initiatives such as habitat restora-
tion, enhancement or protection (Johnson et al., 2004).

Numerous approaches are available for predicting and
mapping species occurrence. Quantitative techniques range
from the suite of generalized linear models to rule-based
methods (Guisan and Zimmermann, 2000). Although there
are many types of distribution models, most are dependent
on two sources of data: an unbiased and precise sample of
species locations and maps of environmental data that cor-
relate with species distribution. Depending on the species,
ecologically plausible variables could represent vegetation,
soil parameters, topography, human disturbance, and inter-
specific interactions (Manly et al., 2002).

Arbitrary decisions during the modeling process, and error
and bias in requisite data, can reduce predictive power or
lead to incorrect inferences (Elith et al., 2002). A model that
poorly reflects actual species–environment relationships will
not enlighten our understanding of ecological processes and
patterns and might result in misplaced resources or harm-
ful conservation and management actions (Loiselle et al.,
2003). Although modellers and practitioners often are aware
of potential sources of error, bias, and variation during model
construction and use, the impacts are seldom quantified and
reported. This is despite the availability of formal methods for
conducting sensitivity and uncertainty analyses (Crosetto and
Tarantola, 2001). Where case-specific sensitivity and uncer-
tainty analyses are impractical, much guidance can be gleaned
from past research. For example, researchers have evaluated
and discussed the predictive performance of a number of tech-
niques (Pearce and Ferrier, 2000; Boyce et al., 2002; Loiselle et
al., 2003); the sensitivity, uncertainty, and efficacy of expert-
based approaches (Dettki et al., 2003; Johnson and Gillingham,
2004); and the lack of ecological theory to support these tech-
niques and their applications (Austin, 2007). Although we have
witnessed a recent surge in the use and evaluation of species-
distribution models and requisite data, we are unaware of any
work that provides a comparison of the relative sensitivity of
model predictions to multiple sources of bias and error and
variation in model design.

We performed a comprehensive sensitivity analysis for
one type of species-distribution model, a resource selection
function (RSF) formulated using logistic regression (Manly
et al., 2002). Sensitivity analyses provide support for model
predictions and highlight areas where assumptions need
to be addressed and source data improved or augmented
(Crosetto and Tarantola, 2001). With the objective of main-
taining realistic ecological relationships we performed the
analysis using previously published location data for wood-
land caribou (Rangifer tarandus caribou) and a map of vegetation
generated from a classified Landsat Thematic Mapper image
(Johnson et al., 2002a, 2003). We measured the sensitivity of
model coefficients, prediction success, and maps of selected
habitats to four factors: alternate model structures, various
levels of bias and error in animal locations, and thematic
misclassification of a vegetation map. Resource selection and
resource selection probability functions are now ubiquitous
in the conservation and ecological literature and, thus, are an
excellent case to demonstrate methods for sensitivity analy-
ses of species-distribution models (Arthur et al., 1996; Boyce

and McDonald, 1999; Compton et al., 2002; Boyce et al., 2003;
Johnson et al., 2004; Fortin et al., 2005).

2. Methods

2.1. Study area

We developed and assessed RSF models for a population
of woodland caribou known as the Wolverine herd located
approximately 250 km northwest of Prince George, British
Columbia, Canada (Fig. 1, Heard and Vagt, 1998). The study area
varies in elevation from valley bottoms at ∼900 m to alpine
summits at ∼2050 m and is characterized by numerous vege-
tation associations. Forest types below 1100 m elevation are
dominated by lodgepole pine (Pinus contorta), white spruce
(Picea glauca), hybrid white spruce (P. glauca × P. engelmannii),
and subalpine fir (Abies lasiocarpa). Between 1100 and 1600 m
elevation, a moist cold climate prevails with forest types con-
sisting primarily of Engelmann spruce (P. engelmannii) and
subalpine fir. Areas at elevations >1600 m are alpine tundra
and are distinguished by gentle to steep windswept slopes
vegetated by shrubs, herbs, bryophytes, and lichens, with
occasional trees in krummholz form (Meidinger and Pojar,
1991).

2.2. Animal locations

For the sensitivity analyses, we used animal location data
collected from 16 individual female caribou of the Wolverine
herd monitored between March 1996 and March 1999. Caribou
were located with differentially correctable Global Positioning
System (GPS) collars scheduled to record one location every
third or fourth hour (GPS 1000, Lotek Engineering, Newmar-
ket, Ontario, Canada; Johnson et al., 2002b). For these analyses,
we used only GPS locations collected during winter (Decem-
ber 1 to March 31). During this period, monitored caribou were
known to demonstrate three coarse-scale selection strategies:
foraging across forested habitats, foraging across alpine habi-
tats, or foraging for some period of time within both forested
and alpine habitats (Johnson et al., 2002a). Because we wanted
to reduce model complexity due to behavioural variation,
we restricted our analyses to only those monitored caribou
that exclusively occurred across forested habitats. Following
screening and the exclusion of out-of-season locations, we
retained 2178 GPS fixes for the sensitivity analysis. All loca-
tions for the 16 caribou were pooled. We did not control for
inconsistent sample sizes across animals; thus, model infer-
ence to the population is likely biased to caribou with the
greatest relocation frequency.

2.3. Modelling approach

A RSF can take many mathematical forms, but is defined
as any function that provides predictions of resource use
that are proportional to the true probability of use (Manly et
al., 2002). We used logistic regression to formulate RSFs that
described the selection patterns and predicted the occurrence
of female woodland caribou from the Wolverine herd. Logistic
regression is commonly used to model species–environment
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Fig. 1 – Woodland caribou locations (central British Columbia, Canada; Johnson et al., 2002a) and boundaries used to define
the availability of habitats for sensitivity analyses of resource selection function species-distribution models.

relationships where the sampling scheme calls for a compari-
son of animal or plant locations with sites where the species is
undetected or absent (Guisan and Zimmermann, 2000; Pearce
and Ferrier, 2000). In the case of RSFs, one does not apply
presence–absence data, but instead contrasts a sample of use
locations with a series of random locations meant to represent
resource availability. The extent and definition of available
resources depends on the type of RSF model and the spatial
and temporal scales of the behaviour of interest. Unlike logis-
tic regression, however, a sample of resource availability does
not accurately represent the proportion of sampled locations
with animals absent and thus prevents the calculation of a
true probability (see Manly et al., 2002; Keating and Cherry,
2004; Johnson et al., 2006).

An RSF constructed using conventional logistic regression
takes the form:

w(x) = exp(ˇ1x1 + ˇ2x2 + · · · + ˇnxn) (1)

where ˇ1. . .ˇn are coefficients generated from a logistic regres-
sion model, x1. . .xn are covariates, typically environmental
features sampled from GIS data, and w(x) represents the pre-
dicted relative probability of species occurrence across any
habitat patch within the study area (Manly et al., 2002).

RSFs can represent complex species–resource relation-
ships. For the purposes of the sensitivity analyses we
developed relatively simple models with one covariate repre-
senting variation in vegetation. We used categorical deviation
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Table 1 – Description, area, patch size, and selection ratio of vegetation types found across the range of the Wolverine
caribou herd and used to assess the sensitivity of resource selection functions to model design, error and bias of animal
locations, and misclassification of resource inventories

Vegetation type Area (km2) Selection ratio Patch size (ha) Description

X S.D. Largesta

Deciduous 384.4 0.566 0.88 9.12 819.8 Primarily stands of Populus tremuloides
(97%), but also P. balsamifera across
floodplains

Pine 498.0 0.648 0.62 6.23 814.9 Stands of P. contorta with secondary
components of Picea mariana or Picea
engelmannii × P. glauca in older stands

Spruce 463.6 0.397 0.88 9.43 624.9 Low-elevation sites dominated by P.
engelmannii × P. glauca

Water 474.3 0.543 21.82 543.66 24993.4 Permanent and ephemeral rivers and
lakes

Wetlands 347.3 1.118 0.56 4.24 558.6 Shrub/sedge- and forb-dominated
wetlands

Krummholz 450.6 0.406 1.35 10.07 539.0 Stunted tree cover of A. lasiocarpa on
gentle to moderate slopes at elevations of
1300–1600 m

Coniferous 2173.3 0.928 4.31 79.43 5905.2 Mid-elevation stands composed of A.
lasiocarpa, P. engelmannii, and P. contorta on
moderate to steep slopes

Pine/black spruce 634.7 1.188 0.94 14.41 1968.4 Mixed stands of P. contorta and P. mariana
or pure stands of P. mariana found on level
to moderate slopes

Pine/spruce 293.7 0.383 1.18 8.53 331.9 Mixed low-elevation stands of P. contorta
and P. engelmannii × P. glauca

Pine/fir 212.6 0.729 0.74 4.40 197.1 Mixed mid- to high-elevation stands of P.
contorta and A. lasiocarpa

Pine lichen 199.5 2.397 0.61 6.35 852.0 Low-productivity sites dominated by
P. contorta

Other 1068.0 0.965 4.86 144.65 15510.1 Reference class for analysis consisting of
shrub, lichen, or bryophyte dominated
alpine vegetation types

The vegetation map was generated using a supervised classification of a Landsat Thematic Mapper satellite image (Johnson et al., 2003). The
selection ratio was calculated as the percentage of animal locations versus the percentage of random locations within a vegetation type.
a All vegetation types had a minimum patch size equal to the grain of the GIS data (0.062 ha).

coding (Menard, 2001) to model selection by caribou dur-
ing winter for 12 vegetation types (Table 1). Vegetation was
mapped using a supervised classification of a Landsat The-
matic Mapper image (30-m × 30-m pixel resolution; Johnson
et al., 2003).

2.4. Introduced error, bias, and model variation

We used observed, not simulated, data to develop the sensi-
tivity analyses. Application of empirical data to the sensitivity
analyses allowed us to represent true animal–environment
responses, but prevented us from controlling all sources of
error and bias. Where possible, we described the error and
bias inherent to the animal locations and the vegetation map.
Also, given that we developed our analyses from one realisa-
tion of observed data these results should be construed as an
example of sensitivity analyses, not an absolute finding with
direct application to all resources selection studies.

We limited our analyses to what we considered common
and controllable factors that influence model interpretation
and predictions. These factors included (1) variation in model
design; (2) geographic error in species locations; (3) bias in

the frequency of sampled animal locations; and (4) thematic
misclassification of resource (e.g., vegetation) data. Resource
selection functions were developed using fixed-effects or con-
ditional logistic regression, except when examining the effects
of model design. Fixed-effects logistic regression requires a
sampling approach that spatially relates or matches used to
random locations (Compton et al., 2002).

2.4.1. RSF model design
Predictions from RSF species-distribution models can vary
depending on how the availability of resources is defined
(Boyce et al., 2003). Johnson’s (1980) orders of selection often
are reported as a rational for delineating resource availabil-
ity. First-, second-, third-, and fourth-order selection represent
the availability of habitats from within the geographic distri-
bution of the species, boundaries of a population, home-range
of an individual, and specific feeding patches or sites, respec-
tively. For RSF designs, third-order selection often serves as the
scale of interest. Thus, the definition of home-range bound-
ary potentially could influence the area of available resources
and selection coefficients. As an alternative to home-range
dependent models, some authors have advocated the use
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of matched fixed-effects logistic regression (Compton et al.,
2002). Fixed-effects logistic regression, allows one to pair sam-
ples that are related according to some behavioural or other
matching criterion. Here, the likelihood is premised on the
difference between two or more paired samples of cases and
controls or in this instance used and random locations. We
matched used with available locations according to the move-
ment distances of observed caribou. Matching controlled for
variation in habitats and behaviour of caribou over time and
space. Fixed-effects analyses can be conducted manually for
1-to-1 pairs using conventional logistic regression software,
where the independent variable is the difference between
the observed values for the case and the control of each
pairing (see Hosmer and Lemeshow, 2000). For complex mod-
els of n-to-n relationships, more sophisticated methods are
available; we used Stata’s Clogit function (Stata Corporation,
2002).

To assess the sensitivity of RSFs to model design, we
compared a fixed-effects logistic regression model with
conventional logistic regression models developed at the
third-order of selection using two commonly reported home-
range algorithms (Johnson, 1980). For the matched analyses,
each use location was paired with five random locations. Con-
sistent with the approach presented by Arthur et al. (1996), the
random locations were sampled from a circle centred on the
preceding use location with a radius equal to the 95% move-
ment distance for that GPS relocation interval (e.g., 4 h, 8 h,
12 h, etc.). The movement distance was the simple Euclidean
distance between successive GPS collar locations; unique 95%
movement distances were calculated for sets of animal loca-
tions with similar relocation intervals. For the home-range
based RSFs, we calculated a 100% minimum convex polygon
and a 95% adaptive kernel home-range with least-squares
cross validation. We randomly plotted the same number of
locations used for the matched fixed-effects design within
each home-range boundary. These random locations quanti-
fied the availability of each vegetation type and in combination
with the animal use locations served as the dependent vari-
able for each logistic regression.

2.4.2. Positional error in locations
Many distribution models, including RSFs, relate the observed,
assumed, or remotely collected locations of a species to
a series of environmental features. Depending on the het-
erogeneity of the environment, location error could have
implications for model performance. To assess the sensi-
tivity of model results to positional error, we generated 20
datasets of simulated caribou locations with incrementally
greater positional error. For each recorded animal location, we
randomly selected X, Y coordinates from a bivariate normal
distribution centred on the actual location, but with an error
radius representing a 95% probability of occurrence. Error in
the focal animal location was increased in 50-m increments
from 50 to 1000 m. This approximates the range of error that
one might experience using various monitoring technologies
available for wildlife research.

2.4.3. Sampling bias
In addition to being imprecise, sampling of animal or plant
locations might be biased. We define bias as a systematic

reduction or increase in the frequency of recorded locations
related to temporal or spatial constraints on observation. In
the case of the monitored caribou, performance of GPS col-
lars was negatively affected by vegetation and topography that
blocked the receipt of satellite signals (Frair et al., 2004). Many
factors will influence GPS collar performance, thus we could
not directly quantify the bias associated with occupancy of
particular vegetation types across the study area. To provide
an approximate estimate of the sensitivity of model results
to sampling bias, we systematically decreased the total num-
ber of locations available for analyses by 5% increments up
to a 50% loss. The deletion of locations was in proportion to
assumed bias associated with each vegetation type and per-
centage occurrence of caribou within the vegetation type as
indicated by the sample data. Bias coefficients were largely
subjective, but based on the canopy closure and stem diameter
of dominant tree species as well as topography for each vege-
tation class as observed during field work (Johnson et al., 2001,
C. Johnson unpublished data). As an example, the coniferous
vegetation type was frequently used by caribou and was char-
acterised by tall large-diameter trees; therefore, the largest
proportion of biased location were removed from that type.
The selection of each location for deletion within a vegetation
class was random.

2.4.4. Misclassification of resources
Models predicting species distribution are often sampled from
and extrapolated to digital data contained within a GIS. The-
matic misclassification of vegetation, habitat or other resource
maps could have implications for model results. To assess the
sensitivity of RSF models to misclassification in vegetation
maps we introduced systematic decreases in the accuracy of
each vegetation type mapped across our study area. We used
empirically defined errors of commission from an indepen-
dent accuracy assessment of our resource map (Johnson et al.,
2003) to reassign a percentage of locations to alternate veg-
etation types. Errors of commission or a decrease in “user’s
accuracy” occurs when a vegetation type is falsely classified
and included within a second type. We randomly misclassi-
fied caribou and random locations in 5% increments until 50%
of the total sample of locations found within each vegetation
type were misclassified. The proportion of locations misclas-
sified to a different type (e.g., pine to spruce) was based on the
observed errors of commission for the study area. Introduced
misclassification was in addition to existing inherent errors in
the resource map (Johnson et al., 2003).

2.5. Assessment of model sensitivity

We assessed the relative sensitivity of model results in three
ways. First, we plotted the coefficients and approximate 95%
confidence intervals for each vegetation coefficient at their
baseline unperturbed values and following the introduction of
variation in model design, location bias, and error in animal
position and resource mapping. We recognise that coeffi-
cients generated for an RSF design are correct, but standard
errors might not truly represent sampling variation (Johnson
et al., 2006). Thus, we generated bootstrapped confidence
intervals using the normal approximation method and 1000
replicates of each perturbed model (Mooney and Duval, 1993).
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We chose this method over the percentile or bias-corrected
percentile methods because we wanted symmetrical confi-
dence intervals and we noted low levels of bias (Efron, 1982)
in the empirical distribution of bootstrapped coefficients. We
reported “significant” effects when the perturbation in sim-
ulated data resulted in confidence interval bars that did not
overlap with the confidence interval bars generated using
the baseline model. In cases where the coefficient and con-
fidence intervals changed sign we concluded that the model
was extremely sensitive to a particular level of error, bias, or
design. Simple interpretation of such coefficients would sug-
gest selection for or avoidance of a resource when in fact
coefficients from the baseline model supported the opposite
conclusion.

Second, we used a k-fold cross validation procedure to
evaluate the influence of the introduced perturbations on
the predictive performance of the RSF models (Boyce et al.,
2002). The k-fold procedure was performed five times ran-
domly withholding 20% of the data for each iteration. We
used a Spearman rank correlation to assess the relationship
between predicted occurrence (w(x); Eq. (1)) for withheld ani-
mal locations and their frequency within 10 incrementally
larger bins of equal size, as defined by the range of predicted
data. For example, if predicted occurrences ranged from 0
to 1.0, then the 10 frequency bins would span intervals of
0.1 (e.g., 0–0.1, . . ., 0.9–1.0). A predictive model will have a
strong mean rank correlation (r̄s) indicating a greater number
of withheld locations in frequency bins with relatively larger
values.

As a third measure of the sensitivity of model predictions,
we calculated the change in area of selected habitats following
the application of a different model or the introduction of error
and bias. We used quantiles of the unperturbed RSF to rank
predictions of caribou occurrence into one of four arbitrary
categories that we assumed correlated with habitat quality
(poor, low, good, high). Of the total range of predicted RSF val-
ues, the first 25% corresponded with poor-quality habitats and
the largest 25% corresponded with high-quality habitats (e.g.,
Carroll et al., 2001). Change in the area of those habitat classes

served as an index of model sensitivity that could be related
to conservation and management decisions.

We recognize that patch characteristics and the degree of
selection for a vegetation type could potentially influence the
magnitude of change in a coefficient. To place our results in
the context of these confounding factors, we report a number
of patch summary statistics and a simple univariate selection
ratio determined as the percentage of use locations versus
the percentage of available locations found within a partic-
ular vegetation type (Table 1). A ratio of 1 suggests that use
of a vegetation type by caribou equals availability of that type
across the study area and infers no selection.

3. Results

3.1. Sensitivity of coefficients

The 12 vegetation types found across the resource map var-
ied considerably in their spatial extent and apparent selection
by caribou (Table 1). Using the maximum absolute percent-
age change for each coefficient, median change was lowest
for RSF model design (65.9%) followed by misclassification
of resources (71.9%), sampling bias (76.7%), and positional
error (121.8%) (Table 2). Following the introduction of posi-
tional error to animal locations six of the 11 vegetation types
deviated from baseline coefficient values with an assumed
location error of 0 m. We observed non-overlapping 95% con-
fidence intervals after as little as 200 m of simulated error in
the X, Y coordinates. Of greatest concern when interpreting
such results, the coefficient for spruce changed sign, indi-
cating selection by caribou versus avoidance, following the
introduction of 1000 m of positional error (Table 2, Fig. 2).

Across all sensitivity analyses, the most strongly selected
vegetation type, pine lichen, suffered the greatest influence
of bias and error in data, and variation in model design. For
example, pine lichen varied from the baseline model after
only a 10% error in the classification of resources and a posi-
tional error of 200 m (Figs. 2 and 3). Across all vegetation

Table 2 – Sensitivity of RSF coefficients to variation in model design, positional error, sampling bias, and
misclassification of vegetation types

Habitat RSF model design Positional error (m) Sampling bias (%) Misclassification of resources (%)

%ˇ Change Diff. ˇ %ˇ change Diff. ˇ %ˇ change Diff. ˇ %ˇ change Diff. ˇ

Pine/fir −65.9 No −75.5 No −76.7 No −47.6 No
Pine 219.0 No −155.2 No −179.0 No −133.3 No
Pine lichen 44.1 Yes −69.9 200 m 29.5 No −60.2 10%
Wetlands −26.2 No −76.1 250 m −39.1 No −71.9 35%
Coniferous −118.6 No −349.8 650 m −4053.6 25% −340.7 No
Spruce −41.3 No −129.2 350 m 142.2 45% −49.5 No
Pine/spruce −65.6 No −121.8 250 m 24.1 No −61.2 No
Krummholz 63.1 No −64.5 No −112.9 50% −89.7 20%
Pine/black spruce 74.9 Yes −43.0 No 17.8 No −20.7 No
Deciduous 294.4 Yes −122.6 No −34.1 No −157.8 No
Water −163.8 No −275.5 600 m −282.3 No −134.0 No

Percent ˇ change represents the maximum change in coefficient (ˇ) values for each vegetation type from the baseline unperturbed model;
different (Diff.) ˇ, indicates the level of error or bias at which coefficients and associated confidence intervals failed to overlap the baseline
model.
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Fig. 2 – Change in ˇ coefficients for 11 vegetation types generated from woodland caribou resource selection functions
models following the systematic introduction of error in the X, Y coordinates of caribou locations. Error bars represent 95%
confidence intervals.

types, the sensitivity analysis for positional error had the
greatest number coefficients that deviated from the base-
line values (Fig. 2). We observed only three coefficients with
significant differences from baseline for each of the model
design, sampling bias, and misclassification of resources sce-
narios (Figs. 3–5). Furthermore, systematic bias was apparent
only for the resource misclassification scenario. In this case,
increasing misclassification error caused most coefficients
to trend toward a beta coefficient of 0 (i.e., no observable
selection). Relative to sampling of resource availability, our

simulation suggested that the magnitude of effect was depen-
dent on vegetation type. For example, depending on the
vegetation type, the adaptive kernel home-range produced the
largest or smallest coefficient of the three resource availability
schemes.

3.2. Sensitivity of predictive accuracy

The unperturbed baseline RSF model had excellent predictive
power (r̄s = 0.933, P < 0.001). Although 95% confidence inter-

Fig. 3 – Change in ˇ coefficients for 11 vegetation types generated from woodland caribou resource selection functions
models following the systematic introduction of sampling bias to each type. Error bars represent 95% confidence intervals.
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Fig. 4 – Change in ˇ coefficients for 11 vegetation types generated from woodland caribou resource selection functions
models using matched logistic regression and availability radii defined by the 95% movement radius for each location
interval (see Fig. 1), and conventional logistic regression and availability defined by a 95% adaptive kernel or 100%
minimum convex polygon home-range (HR; see Fig. 1). Error bars represent 95% confidence intervals.

vals generated from the five k-fold samples were large, mean
Spearman correlation values suggested that positional error
had the largest influence on the predictive performance of
RSF models. For that sensitivity analysis, mean correlation
values dropped below 0.8 following the introduction of 400 m
of positional error (Fig. 6A). We recorded variation, but little

consistent drop in prediction success for home-range derived
RSF models or models subject to location bias (Fig. 6B and
C). The incorrect identification of resources appeared to be a
factor for model prediction only following the misclassifica-
tion of vegetation attributes recorded at >15% of caribou and
random locations (Fig. 6D).

Fig. 5 – Change in ˇ coefficients for 11 vegetation types generated from woodland caribou resource selection functions
models following the systematic introduction of thematic misclassification to each vegetation type. Error bars represent 95%
confidence intervals.
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Fig. 6 – Change in the predictive success (r̄s) of resource selection function models for woodland caribou following the
introduction of error in the X, Y coordinates at caribou locations (A), the redefinition of resource availability (B), the
introduction of sampling bias to each vegetation type (C), and the introduction of thematic misclassification to each
vegetation type (D). Error bars represent 95% confidence intervals generated from 5 k-fold replicates.

3.3. Sensitivity of selected habitats

Following the calculation of quartiles and extrapolation of
model coefficients to GIS data, the high-quality habitat class
was less sensitive than the other three habitat classes to
the introduction of error and bias and variation in model
design. For example, the area of high-quality habitat was
consistent across the movement radius and home-range RSF
models and converted to a less valued type after the intro-
duction of 450 m of positional error or a 30% sampling bias
for caribou locations (Fig. 7A–C). Misclassification of vege-
tation impacted the area of high-quality habitat across the
range of introduced perturbation, but only up to a maximum
of 304.6 km2 (Fig. 7D). That sensitivity analysis was influ-
enced not only by change in coefficient values, but also a
modified distribution of vegetation types across the study
area corresponding with the level of thematic misclassifi-
cation. The largest and smallest changes in area across all
habitat types occurred following the introduction of loca-
tion bias and after varying RSF models, respectively (Fig. 7C
and A). When considering location bias, the area of high-
quality habitat nearly doubled after the selective removal of
30% of the caribou locations. A systematic decrease in the
value of the coefficient with the largest distribution, conifer-
ous, accounted for the dramatic change in the area of ranked
habitats (Table 1).

4. Discussion

Our analyses revealed that coefficients and predictions of
species-distribution RSF models are sensitive to bias and error
in dependent and independent data and model design. Sen-
sitivity, however, should be considered a relative construct
specific to the question or prediction at hand. Model validity
is only threatened by sensitive parameters when uncertainty
eclipses the precision required for the decision making pro-
cess. Given our results, when should practitioners question
their data and modelling approach?

If the direct values of coefficients are an important com-
ponent of model inference, then our analyses suggest that
species-distribution RSF models are sensitive to some levels of
the range of variation we simulated. Given the magnitude of
change in coefficients we observed, one should be concerned
about interpretations using metrics such as odds ratios
(Menard, 2001). Change in coefficient values also invalidated
simple conclusions such as statistically identifiable selection
or avoidance of resources and in one case a coefficient
changed sign suggesting an interpretation opposite from the
true selection pattern. In general, increases in sampling bias
and positional error led to coefficients that converged toward
0, decreasing our ability to statistically identify selection
or avoidance of resources. That relationship, however, was
nonlinear and inconsistent across vegetation types. Following
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Fig. 7 – Change in the area (km2) of ranked habitats of woodland caribou with variation in resource selection models (A) and
following the introduction of error (B) and sampling bias in caribou locations (C), and systematic misclassification of a
vegetation map (D). A fixed-effects RSF served as the reference from which categorical breaks in habitat quality were
defined and differences in habitat area were calculated. The fixed-effects RSF had 1207.9, 1071.3, 3739.4, and 1181.5 km2 of
poor- (�), low- (©), good- (�), and high-quality (�) habitats, respectively.

the introduction of location error, coefficients for some types
appeared to increase or decrease sharply up to some level
of error before maintaining a relatively consistent value. We
suspect that such nonlinearities are a function of vegetation
patch size (Table 1). When error exceeds mean patch size the
influence of imprecision in species locations should stabilize
(Rettie and McLoughlin, 1999). In general, practitioners should
be most concerned about positional error when interpreting
coefficients that are highly selected or avoided.

Inherent nonexperimental sources of bias and error limit
our ability to make exact recommendations concerning model
reliability. We can, however, perform a relative comparison
of the four sensitivity analyses and assess model responses
within the context of current expectations for data used in
similar studies. Considering the three evaluation measures,
RSF is least sensitive to the definition of resource availability.
The fixed-effects and home-range-based models differed rel-
atively little in predictive ability and the ranking of habitats.
One could argue that fixed-effects models are a more precise
method for studying resource selection as they allow control
of temporal and spatial variation in resources and avoid issues
of selecting and properly estimating home-range boundaries
(Girard et al., 2002). Ultimately, however, if prediction of occur-
rence and important habitats are the primary products of
a species-distribution model then logistic regression-based
RSFs appear robust to such choices. This conclusion might
not hold where availability radii are generated for markedly

different spatial scales than we represented, or where the
interpretation of coefficient values is necessary (Boyce et al.,
2003).

Model results and predictions were most sensitive to intro-
duced error in the position of recorded animal locations. For
our data, coefficients of highly selected or avoided vegeta-
tion types differed from the baseline model following ≥200 m
of introduced positional error. Mean predictive success also
declined at the 250-m mark; although, the area of ranked
habitats varied within this error threshold. Fortunately, new
technology has increased researchers’ ability to collect precise
location data for a range of species. Accuracy and precision of
locations collected with GPS devices, collars, and tags should
be well below the 250-m mark we identified. Other methods
of location such as GPS assisted radiotelemetry, triangulation,
map location, or Argos satellite collars may approach or sur-
pass that error threshold (Keating et al., 1991; Leptich et al.,
1994).

There is little a researcher can do to directly rectify posi-
tional error in species locations. Of a number of indirect
solutions, one could amalgamate similar patch types with the
goal of increasing the mean patch size. Such an approach
would lower the error threshold of species locations occurring
in some habitat types, but would sacrifice the resolution of
inference. One also could generate error buffers around loca-
tions and include the percentage occurrence of a resource as
a model covariate or sensor all point locations that might fall



Author's personal copy

e c o l o g i c a l m o d e l l i n g 2 1 3 ( 2 0 0 8 ) 143–155 153

within more than one habitat type (Zimmerman and Powell,
1995). Error buffers will decrease the ability to detect selection
whereas censoring could potentially result in the elimination
of a large number of locations for species that occupy eco-
tones or heterogeneous landscapes (Rettie and McLoughlin,
1999). A third approach is to subsample locations from within
an error polygon to calculate the proportion and precision of
used habitats (Samuel and Kenow, 1992; Kenow et al., 2001).

Although GPS devices provide unprecedented accuracy and
precision, location acquisition success is correlated with habi-
tat features and is therefore a potentially confounding factor
for species-distribution models. A number of studies have
attempted to measure and report the extent and sources of
bias within different ecosystems (Edenius, 1996; Dussault et
al., 1999; D’Eon et al., 2002). Although those efforts are note-
worthy, we are aware of no work that has assessed the tradeoff
in location accuracy for selection bias when employing GPS
devices. Typically, researchers have looked at either the bias
or accuracy issue and have reported that both can have sig-
nificant influences on the results of resource selection and
species-distribution studies (Johnson et al., 1998; Frair et al.,
2004). For our study area, bias should be less of a concern than
location quality.

For the majority of covariates in our models, bias was not
important until confidence intervals failed to overlap follow-
ing the selective loss of 25% or more locations. That value is
larger than some fix acquisition rates reported for GPS col-
lars in forested environments and levels of false negatives
for visual or audible presence–absence surveys (Moen et al.,
1996; Edenius, 1996; Dussault et al., 1999; Johnson et al., 2002b;
Diefenbach et al., 2003; Gu and Swihart, 2004; but see Tyre et
al., 2003). We reiterate that our bias factors are only scaled
approximations of how GPS collars performed across our study
area relative to canopy closure and topography. Based on field
experience and the results of other studies, relative differ-
ences among vegetation types are likely realistic, but absolute
differences cannot be determined.

Field and controlled research has demonstrated that fix
acquisition rates are not exclusively a product of vegetative
and topographic elements of habitats (D’Eon et al., 2002; Heard
et al., In Press). Thus, it is difficult for researchers to conclu-
sively determine the level of bias in data collected from collars
deployed on free-ranging animals. Based on experimental
studies, we should expect a reduced number of locations from
GPS collars in vegetation types with large-diameter, dense
stands of trees with closed canopy conditions (Moen et al.,
1996). Detection rates may be easier to establish for studies
where presence is determined through visual or audible cues
(Diefenbach et al., 2003). Regardless of the approach, where
bias is thought to be an issue, sample weighting, iterative
simulation, appropriate statistical models, and buffers around
locations or movement vectors might be suitable solutions
(Rettie and McLoughlin, 1999; Kenow et al., 2001; Johnson et al.,
2002a; Tyre et al., 2003; Frair et al., 2004). As with location error,
some corrective efforts come at a cost including decreased
location accuracy and reduced ability to detect resource selec-
tion.

For the levels and types of thematic misclassification we
introduced, most coefficients did not significantly differ from
the baseline model, although pine lichen and krummholz

types demonstrated change after as little as a 10 and 20% mis-
classification rate, respectively. Mean predictive accuracy, as
assessed with the k-fold cross validation procedure, declined
following the introduction of a 20–25% misclassification rate
and the area of the four habitat classes began to vary markedly
with a 25% misclassification rate. Most reported accuracy
assessments for vegetation or habitat maps fall close to or
below this threshold. As examples, the map used for this work
had an overall accuracy of 77% (Johnson et al., 2003), Franklin
et al. (2001) reported an accuracy of 75% for vegetated griz-
zly bear habitat classes mapped using satellite imagery, and
Morrison (1997) achieved an average accuracy of 90% when
using satellite imagery to map shorebird habitats.

With the exception of radiometric error across a small
portion of pixels, misclassification of resource maps should
be considered a source of bias not error. A map will have
a finite number of resources, habitats, or vegetation types
and typically misclassification from one type to another is
not a random process. Using remotely sensed spectral data,
misclassification rates will covary for types with similar
reflectance patterns (Franklin et al., 2001; Johnson et al., 2003).
Errors of commission could lead to changes in coefficient val-
ues that falsely suggest selection or avoidance or errors could
offset for no net change in apparent selection, as we observed
for the pine/black spruce type. These relationships could be
difficult to determine for resource maps consisting of many
different types.

5. Recommendations and conclusions

Our results suggest that the interpretation of RSF species-
distribution models can be confounded by error and bias in
the dependent and independent variables and differences in
model design. Conclusions are most sensitive to the strict
interpretation of coefficients when compared to prediction
success and categorical maps of habitat quality. Species loca-
tion error appeared to be the greatest contributing factor to
reduced accuracy in selection coefficients. Uncertainty inher-
ent to model selection, non-representative sampling of study
subjects, and positional error in resource maps are other fac-
tors that could further threaten the precision and accuracy of
predictions.

We must caution that the results of our simulations may be
specific to the study species or area we modelled. We expect
some parallels with other ungulate species and data types,
but interactions between coefficient values, resource types,
patch size, and the distribution of the organism will confound
indices of model sensitivity. We have, however, provided a
framework for practitioners to conduct study-specific sensitiv-
ity analyses. Although we believe such follow-up analyses are
important we could find few examples of species-distribution
studies reporting the sensitivity of model data and uncer-
tainty around predictions (but, see Buckland and Elston, 1993;
Loiselle et al., 2003). Although less onerous, most researchers
also fail to evaluate and report anticipated or measured error
and bias in species locations and maps or the implications
of model choice. Our results confirm the recommendations
of others: researchers should evaluate and report the data
from which models are constructed, rectify the most sensitive
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sources, and conclude with an uncertainty analysis to deter-
mine the range of potential results (Burgman et al., 2001; Elith
et al., 2002; Regan et al., 2002). Sensitivity and uncertainty
analyses are essential if models are to enlighten our under-
standing of ecological processes and patterns or to provide
useful guidance for management and conservation decision
making.
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