Chapter 4

Bipolar Junction Transistors. Problem Solutions

4.1 Problem 4.37

It is required to design the circuit in Figure (4.1) so that a current of 1 mA is established in the emitter and a voltage of +5 V appears at the collector. The transistor type used has a nominal β of 100. However, the β value can be as low as 50 and as high as 150. Your design should ensure that the specified emitter current is obtained when $\beta = 100$ and that at the extreme values of β the emitter current does not change by more than 10% of its nominal value. Also, design for as large value for R_B as possible. Give the values of R_B , R_E , and R_C to the nearest kilo-ohm. What is the expected range of collector current and collector voltage corresponding to the full range of β values?

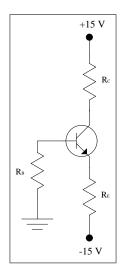


Figure 4.1:

Solution

Nominal $\beta = 100$, so nominal $\alpha = \beta/(1+\beta) = 0.99$, nominal $I_E = 1$ mA, nominal $I_C = \alpha I_E = 0.99$ mA, nominal $V_C = +5$ V. R_C can then be calculated as:

$$R_C = \frac{V_{CC} - V_C}{I_C}$$
$$= \frac{15 - 5}{0.99}$$
$$= 10.1 \ k\Omega$$
$$= 10 \ k\Omega$$

Applying Kirchhoff's voltage rule on the base-emitter loop we get:

$$I_E R_E + I_B R_B = V_{EE} - V_{BE}$$

Using $I_B = I_E/(\beta + 1)$, we then get:

$$I_{E} = \frac{V_{EE} - V_{BE}}{R_{E} + \frac{R_{B}}{1+\beta}}$$

$$= \frac{15 - 0.7}{R_{E} + \frac{R_{B}}{101}}$$

$$1 = \frac{14.3}{R_{E} + \frac{R_{B}}{101}}$$

$$R_{E} + \frac{R_{B}}{101} = 14.3$$
(4.1)
(4.1)
(4.2)

The collector current depends only on V_{BE} , while I_B and I_E depends also on β . Note that for the same collector current, changing β from 100 to 50 changes the base current by a factor of 2, while changing it from 100 to 150, changes the base current by a factor 2/3. This means that reducing β will have more effect on the emitter current then increasing it. So we design the circuit to limit the maximum change in the emitter current at $\beta = 50$. Since decreasing β decreases the emitter current we then use the lower limit of I_E of 0.9 mA and $\beta = 50$ in Equation (4.1):

$$0.9 = \frac{14.3}{R_E + \frac{R_B}{51}}$$

$$R_E + \frac{R_B}{51} = 15.89$$
(4.3)

Using Equation (4.2) and Equation (4.3) we get:

$$R_B = 164 k\Omega$$
$$R_E = 13 k\Omega$$

to find the range of I_C and V_C for the full range of β values we use:

$$I_C = \alpha I_E$$

= $\frac{\beta}{1+\beta} \times \frac{V_{EE} - V_{BE}}{R_E + \frac{R_B}{1+\beta}}$ (4.4)

$$V_C = V_{CC} - I_C R_C \tag{4.5}$$

Using Equation (4.4) and Equation (4.5) we get for $\beta = 50$:

$$I_C = \frac{50}{1+50} \times \frac{15-0.7}{13+\frac{164}{51}}$$

= 0.864 mA
$$V_C = 15-0.864 \times 10$$

= 6.36 V

and for $\beta = 150$:

$$I_C = \frac{150}{1+150} \times \frac{15-0.7}{13+\frac{164}{151}}$$

= q.008 mA
$$V_C = 15-1.008 \times 10$$

= 4.92 V

4.2 Problem 4.49

We wish to design the amplifier circuit of Figure (4.2) under the constraint that V_{CC} is fixed. Let the input signal $v_{be} = \hat{V}_{be} \sin \omega t$ where \hat{V}_{be} is the maximum value for acceptable linearity. Show for the design that results in the largest signal at the collector without the BJT leaving the active region, that

$$R_{C}I_{C} = \frac{V_{CC} - V_{BE} - \hat{V}_{be}}{1 + \frac{\hat{V}_{be}}{V_{T}}}$$

and find an expression for the voltage gain obtained. For $V_{CC} = 10$ V, $V_{BE} = 0.7$ V, and $\hat{V}_{be} = 5$ mV, find the dc voltage at the collector, the amplitude of the output voltage signal, and the voltage gain.

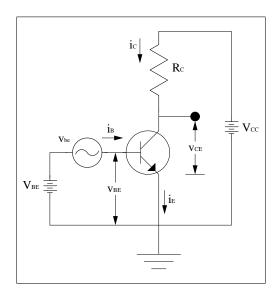


Figure 4.2:

Solution

The total collector current (ac and dc) i_C is given by:

$$i_C = I_C + g_m v_{be}$$

= $I_C + g_m \hat{V}_{be} \sin \omega t$

The total collector voltage v_C is similarly given by:

$$v_C = V_{CC} - I_C R_C - g_m \hat{V}_{be} \sin \omega t$$

To maintain the BJT in the active region $v_c \ge v_{be}$ then:

$$V_{CC} - I_C R_C - g_m \hat{V}_{be} \ge V_{BE} + \hat{V}_{be}$$

To maximize v_C we should use the equal sign in the last equation, i.e.

$$V_{CC} - I_C R_C - g_m R_C \hat{V}_{be} = V_{BE} + \hat{V}_{be}$$

Using the expression for g_m :

$$g_m = \frac{I_C}{V_T}$$

the last equation then becomes:

$$V_{CC} - I_C R_C \frac{\hat{V}_{be}}{V_T} = V_{BE} + \hat{V}_{be}$$
$$I_C R_C \left(1 + \frac{\hat{V}_{be}}{V_T}\right) = V_{CC} - V_{BE} - \hat{V}_{be}$$
$$I_C R_C = \frac{V_{CC} - V_{BE} - \hat{V}_{be}}{1 + \frac{\hat{V}_{be}}{V_T}}$$

The voltage gain $A_v = -g_m R_C$, using the last equation we get:

$$A_{v} = g_{m}R_{C}$$

$$= -\frac{I_{C}}{V_{T}}R_{C}$$

$$= -\frac{V_{CC} - V_{BE} - \hat{V}_{be}}{V_{T} + \hat{V}_{be}}$$

$$(4.6)$$

Substituting with the given numerical values we get:

$$I_C R_C = \frac{V_{CC} - V_{BE} - \hat{V}_{be}}{1 + \frac{\hat{V}_{be}}{V_T}}$$

= $\frac{10 - 0.7 - 0.005}{1 + \frac{5}{25}}$
= 7.75 V
 $V_C = V_{CC} - I_C R_C$
= $10 - 7.75$
= 2.25 V

The ac output voltage v_c is given by:

6

$$v_c = V_C - v_{be}$$

= $V_C - (V_{BE} + \hat{V}_{be} \sin \omega t)$

The amplitude of v_c will determined by the amplitude of v_{be} , i.e.

$$\hat{V}_c = V_C - (V_{BE} + \hat{V}_{be})
= 2.25 - (0.7 + 0.005)
= 1.55 V$$

The voltage gain can be calculated from $-\hat{V}_c/\hat{V}_{be}$ and from Equation (4.6):

$$A_v = -\frac{\hat{V}_c}{\hat{V}_{be}}$$

$$= -\frac{1.55}{0.005}$$

$$= -310$$

$$= -\frac{V_{CC} - V_{BE} - \hat{V}_{be}}{V_T + \hat{V}_{be}}$$

$$= -\frac{10 - 0.7 - 0.005}{0.025 + 0.005}$$

$$= -\frac{9.295}{0.03}$$

$$= -309.8$$

$$= -310$$

4.3 Problem 4.61

Using the BJT equivalent circuit model of Figure (4.3) sketch the equivalent circuit of a transistor amplifier for which a resistance R_e is connected between the emitter and ground, the collector is grounded and an input signal source v_b is connected between the base and ground. (It is assumed that the transistor is properly biased to operate in the active region.) Show that:

(a) the voltage gain between the base and emitter, that is v_e/v_b , is given by:

$$\frac{v_e}{v_b} = \frac{R_e}{R_e + r_e}$$

(b) the input resistance,

$$R_{in} \equiv \frac{v_b}{i_b} = (\beta + 1)(R_e + r_e)$$

Find the numerical value for (v_e/v_b) and R_{in} for the case $R_e = 1 \ k\Omega$, $\beta = 100$ and the emitter bias current $I_E = 1 \text{ mA}$.

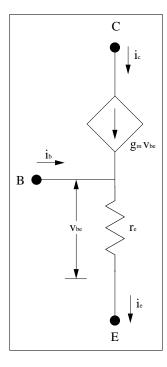
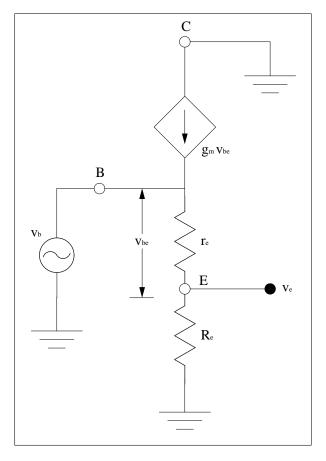


Figure 4.3:

Solution

The required equivalent circuit is shown in Figure (4.4).



(a) v_b , r_e , and R_e form a voltage divider, where v_e is the voltage across R_e that is given by;

$$v_e = \frac{R_e}{R_e + r_e} v_b$$
$$\frac{v_e}{v_b} = \frac{R_e}{R_e + r_e}$$

(b) the current equation at the junction at the top of r_e , gives:

$$\begin{aligned} \frac{v_{be}}{r_e} &= i_b + g_m v_{be} \\ i_b &= \frac{v_{be}}{r_e} - g_m v_{be} \\ &= \frac{v_{be}}{r_e} (1 - g_m r_e) \\ &= \frac{v_{be}}{r_e} \left(1 - g_m \frac{\alpha}{g_m} \right) \\ &= \frac{v_{be}}{r_e} (1 - \alpha) \\ &= \frac{v_{be}}{r_e} \left(1 - \frac{\beta}{1 + \beta} \right) \\ &= \frac{v_{be}}{r_e} \times \frac{1}{1 + \beta} \end{aligned}$$

from the volatge divider we get;

$$v_{be} = \frac{r_e}{R_e + r_e} v_b$$

Using this last equation, the base current i_b becomes:

$$i_b = \frac{1}{r_e(1+\beta)} \times \frac{v_b r_e}{R_e + r_e}$$
$$= \frac{1}{1+\beta} \times \frac{v_b}{R_e + r_e}$$
$$R_i = \frac{v_b}{i_b}$$
$$= (1+\beta)(R_e + r_e)$$

Substituting with the given numerical values we get:

$$r_{e} = \frac{V_{T}}{I_{E}} \\ = \frac{0.025}{0.001} \\ = 25 \ \Omega \\ \frac{v_{e}}{v_{b}} = \frac{R_{e}}{R_{e} + r_{e}} \\ = \frac{1000}{1000 + 25} \\ = 0.976$$

$$R_{in} = (1 + \beta)(R_e + r_e)$$

= 101 × 1025
= 103.5 kΩ

4.4 Problem 4.83

The amplifier of Figure (4.5) consists of two identical common emitter amplifiers connected in cascade. Observe that the input resistance of the second stage, R_{in2} , constitutes the load resistance of the first stage.

- (a) for $V_{CC} = 15$ V, $R_1 = 100 \ k\Omega$, $R_2 = 47 \ k\Omega$, $R_E = 3.9 \ k\Omega$, and $\beta = 100$, determine the dc collector current and collector voltage of each transistor.
- (b) Draw the small-signal equivalent circuit of the entire amplifier and give the values of all its components. Neglect r_{o1} and r_{o2} .
- (c) Find R_{in1} and v_{b1}/v_s for $R_s = 5 \ k\Omega$.
- (d) Find R_{in2} and v_{b2}/v_{b1} .
- (e) For $R_L = 2 \ k\Omega$, find v_o/v_{b2} .
- (f) Find the overall voltage gain v_o/v_s .

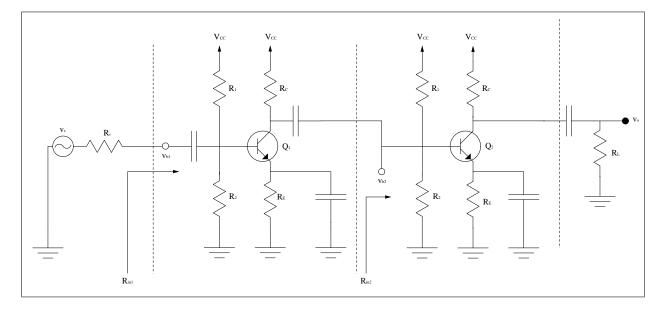


Figure 4.5: All capacitors are blocking capacitors of very large capacitance.

Solution

(a) Since the two stages are identical we then have for each transistor:

$$V_{BB} = V_{CC} \times \frac{R_2}{R_1 + R_2}$$

= $15 \times \frac{47}{100 + 47}$
= $4.8 V$
 $R_B = R_1 / / R_2$
= $100 / / 47$
= $32 k\Omega$
 $I_E = \frac{V_{BB} - V_{BE}}{R_E + \frac{R_B}{1 + \beta}}$
= $\frac{4.8 - 0.7}{3.9 + \frac{32}{101}}$
= $0.97 mA$
 $I_C = \alpha I_E$
= $\frac{\beta}{1 + \beta} \times I_E$
= $\frac{100}{101} \times 0.97$
= $0.96 mA$

(b) The small signal equivalent circuit is shown in Figure (4.6). Once again, since the two

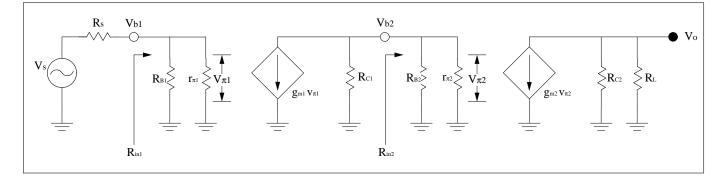


Figure 4.6:

stages are identical, we get:

$$R_{B1} = R_{B2} = R_B$$

$$= 32 \ k\Omega$$

$$g_{m1} = g_{m2}$$

$$= \frac{I_C}{V_T}$$

$$= \frac{0.96}{0.025}$$

$$= 38.4 \ mV/A$$

$$r_{\pi 1} = r_{\pi 2}$$

$$= \frac{\beta}{g_m}$$

$$= \frac{100}{38.4}$$

$$R_{C1} = R_{C2}$$

$$= 6.8 \ k\Omega$$

(c)

$$R_{in1} = R_{B1} / / r_{\pi 1}$$

= 32//2.6
= 2.4 k\Omega

Using the voltage divider formed by v_s , R_s , and R_{in1} , we get:

$$v_{b1} = \frac{R_{in1}}{R_s + R_{in1}} \times v_s$$
$$\frac{v_{b1}}{v_s} = \frac{2.4}{5 + 2.4}$$
$$= 0.32$$

(d)

$$R_{in2} = R_{B2}//r_{\pi 2}$$

= 32//2.6
= 2.4 k\Omega

 v_{b2} is the voltage produced by the current $g_{m1}v_{\pi 1}$ flowing through the parallel equivalent of R_{C1} , R_{B2} , and $r_{\pi 2}$, notice that $v_{\pi 1} = v_{b1}$, so:

$$v_{b2} = -g_{m1}v_{\pi 1} \times R_{C1}//R_{B2}//r_{\pi 2}$$

= $-g_{m1}v_{b1} \times R_{C1}//R_{in1}$
= $-34.4 \times v_{b1} \times (6.8//2.4)$
 $\frac{v_{b2}}{v_{b1}} = -68.1$

(e) Similarly, v_o is given by:

$$v_{o} = -g_{m2}v_{\pi 2} \times (R_{C2}//R_{L})$$

= $-g_{m2}v_{b2} \times (R_{C2}//R_{L})$
 $\frac{v_{o}}{v_{b1}} = -34.4 \times (6.8//2.0)$
= -59.3

(f) The overall gain v_o/v_s is given by:

$$\frac{v_o}{v_s} = \frac{v_{b1}}{v_s} \times \frac{v_{b2}}{v_{b1}} \times \frac{v_o}{v_{b2}}$$
$$= 0.32 \times -68.1 \times -59.3$$
$$= 1292$$

4.5 Problem 4.92

In the emitter follower in Figure (4.7), the signal source is directly coupled to the transistor base. If the dc component of v_s is zero, find the dc emitter current. Asume $\beta = 120$. Neglecting r_{\circ} , find R_i , the voltage gain v_{\circ}/v_s , the current gain i_{\circ}/i_s and the output resistance R_{\circ} .

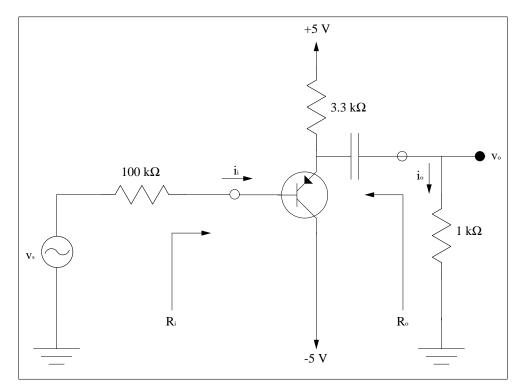


Figure 4.7: The capacitor is a blocking capacitor of very large capacitance.

Solution

The T-model equivalent of the given circuit is shown in Figure (4.8) Given that $\alpha \approx 1$, the emitter current I_E is given by:

$$I_E = \frac{V_{CC} - V_{BE}}{R_C + \frac{R_B}{1+\beta}}$$
$$= \frac{5.0 - 0.7}{3.3 + \frac{100}{121}}$$
$$= 1.042 \ mA$$

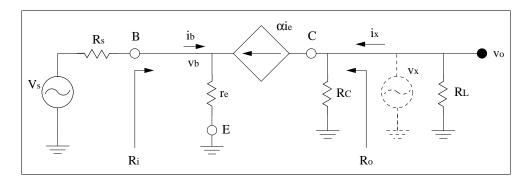


Figure 4.8:

We can calculate r_e and R_i from:

$$r_e = \frac{V_T}{I_E}$$
$$= \frac{25}{1.042}$$
$$= 24 \Omega$$

The input resistance R_i is the resistance that the source will see looking into the base. It is clear from Figure (4.8) that R_i is composed of r_e , R_C , and R_L . The last two resistors are connected in parallel and obviously the $R_{CL} = R_C / / R_L$ is in series with r_e since they both carry the same current. This situation is similar to that where a resistor R_e is connected to the emitter and is in series with r_e , in this case $R_i = (1 + \beta)(r_e + R_e)$. In the case at hand R_i is then given by:

$$R_{i} = (1 + \beta)(r_{e} + R_{CL})$$

= $(1 + \beta)(r_{e} + R_{C}//R_{L})$
= $121 \times \left(24 + \frac{3.3 \times 1}{3.3 + 1}\right)$
= $121 \times (24 + 767)$
= $95.8 \ k\Omega$

 v_b, r_e , and R_{CL} form a voltage divider. The output voltage v_o is the voltage across R_{CL} we then have:

$$\frac{v_o}{v_b} = \frac{R_{CL}}{r_e + R_{CL}}$$

while v_s , R_s , and R_i form another voltage divider where v_b is the voltage across R_i , we then have:

$$\frac{v_b}{v_s} = \frac{R_i}{R_s + R_i}$$

Using the last two equations, the overall voltage gain v_o/v_s is:

$$\frac{v_o}{v_s} = \frac{v_b}{v_s} \times \frac{v_o}{v_b}
= \frac{R_i}{R_s + R_i} \times \frac{R_{CL}}{r_e + R_{CL}}
= \frac{95.8}{100 + 95.8} \times \frac{0.767}{0.024 + 0.767}
= 0.474$$

The input current i_i is the current produced by the input voltage v_s in the series combination of R_s and R_i , while the output current i_o is produced by the output voltage through the load resistor R_L , so the overall current gain i_o/i_i is given by:

$$\frac{i_o}{i_i} = \frac{v_o}{R_L} / \frac{v_s}{R_s + R_i}$$
$$= \frac{v_o}{v_s} \times \frac{R_s + R_i}{R_L}$$
$$= 0.474 \times \frac{100 + 95.8}{1}$$
$$= 92.8$$

To find the output resistance R_o we set v_s to zero and insert a virtual voltage source v_x at the point where the load device looks back at the circuit. Let us assume that v_x produces a virtual current i_x , as shown by the dashed part of the circuit in Figure (4.8). Taking v_x across the input part of the circuit ($v_s = 0$), we get:

$$v_x = i_e r_e + i_b R_s$$

= $i_e r_e + (1 - \alpha) i_e R_s$
= $i_e r_e + \frac{R_s}{1 + \beta}$
= $i_e \left[r_e + \frac{R_s}{1 + \beta} \right]$

The virtual current i_x is given by:

$$i_{x} = \frac{v_{x}}{R_{C}} + i_{e}$$

$$= \frac{v_{x}}{R_{C}} + \frac{v_{x}}{r_{e} + \frac{R_{s}}{1+\beta}}$$

$$\frac{i_{x}}{v_{x}} = \frac{1}{R_{o}}$$

$$= \frac{1}{R_{C}} + \frac{1}{r_{e} + \frac{R_{s}}{1+\beta}}$$

$$R_{o} = \frac{R_{C}}{\left| r_{e} + \frac{R_{s}}{1+\beta} \right|}$$

$$= \frac{3.3}{\left| 0.024 + \frac{100}{121} \right|}$$

$$= \frac{3.3}{0.85} k\Omega$$

$$= \frac{3.3 \times 0.85}{3.3 + 0.85}$$

$$= 0.676 k\Omega$$

4.6 Problem 4.96

For the follower circuit in Figure (4.9) let transistor Q_1 have $\beta = 20$ and transistor Q_2 have $\beta = 200$, and neglect the effect of r_{\circ} . Use $V_{BE} = 0.7$ V.

- (a) Find the dc emitter current of Q_1 and Q_2 . Also find the dc voltages V_{B1} and V_{B2} .
- (b) If a load resistance $R_L = 1 \ k\Omega$, is connected to the output terminal, find the voltage gain from the base to the emitter of Q_2 , v_0/v_{b2} , and find the input resistance R_{ib2} looking into base of Q_2 . (*Hint:* Consider Q_2 as an emitter follower fed by a voltage v_{b2} at its base.)
- (c) Replacing Q_2 with its input resistance R_{ib2} found in (b), analyze the circuit of emitter follower Q_1 to determine its input resistance R_i , and the gain from its base to its emitter, v_{e1}/v_{b1} .
- (d) If the circuit is fed with a source having a 100- $k\Omega$ resistance, find the transmission to the base of Q_1 , v_{b1}/v_s .
- (e) Find the overall voltage gain v_{\circ}/v_s .

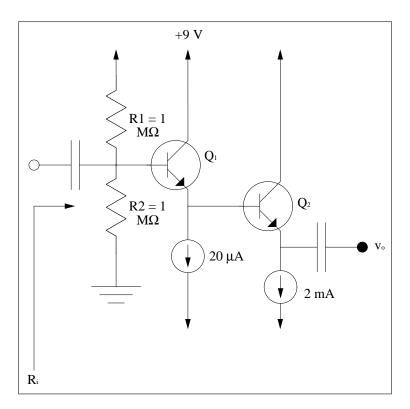


Figure 4.9: The capacitors are a blocking capacitors of very large capacitance.

Solution

(a) In the base circuit of Q_1 , one can replace V_{CC} , $R_1 = 1M\Omega$, $R_2 = 1M\Omega$ by their the Thevenin's equivalent of R_{BB} and V_{BB} , such that:

$$R_{BB} = \frac{R_1 R_2}{R_1 + R_2}$$
$$= \frac{1 \times 1}{1 + 1}$$
$$= 0.5 M\Omega$$
$$V_{BB} = V_{CC} \times \frac{R_1}{R_1 + R_2}$$
$$= 9.0 \times 0.5$$
$$= 4.5 V$$

The emitter currents of Q_1 and Q_2 are given by:

$$I_{E1} = 2 mA$$

$$I_{E2} = 20 \mu A + I_{B2}$$

$$= 20 \mu A + \frac{I_{E2}}{1 + \beta_2}$$

$$= 20 \mu A + \frac{2000(\mu A)}{201}$$

$$= 30 \mu A$$

The base voltages of Q_1 and Q_2 , are:

$$V_{B1} = V_{BB} - I_{B1}R_{BB}$$

= $V_{BB} - \frac{I_{E1}1 + \beta_1}{\times}R_{BB}$
= $4.5 - \frac{30(\mu A)}{21} \times 0.5(M\Omega)$
= $4.5 - 1.43(\mu A) \times 0.5(M\Omega)$
= $3.79 V$
 $V_{B2} = V_{B1} - V_{BE}$
= $3.79 - 0.7$
= $3.09 V$

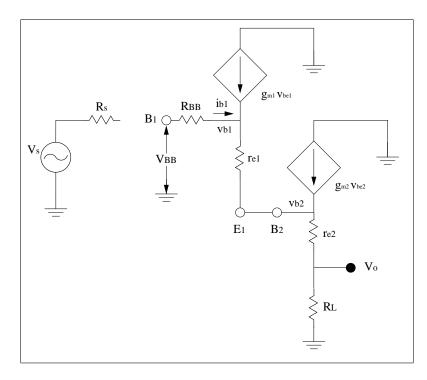


Figure 4.10:

(b) the T-model equivalent of the whole circuit is shown in Figure (4.10). It is clear from the figure that:

$$v_{o} = \frac{R_{L}}{R_{L} + r_{e2}} \times v_{b2}$$

$$r_{e2} = \frac{V_{T}}{I_{E2}}$$

$$= \frac{25}{2}$$

$$= 12.5 \Omega$$

$$\frac{v_{o}}{v_{b2}} = \frac{R_{L}}{R_{L} + r_{e2}}$$

$$= \frac{1000}{1000 + 12.5}$$

$$= 0.988$$

$$R_{ib2} = (1 + \beta_{2})(r_{e2} + R_{L})$$

$$= 201 \times (1000 + 12.5)$$

$$= 203.5 k\Omega$$

(c) Replacing the second transistor Q_2 by its input resistance in Figure (4.10)we get:

$$r_{e1} = \frac{V_T}{I_{E1}}$$

$$= \frac{25000(\mu V)}{30(\mu A)}$$

$$= 833 \ \Omega$$

$$= 0.833 \ k\Omega$$

$$v_{e1} = \frac{R_{ib2}}{R_{ib2} + r_{e1}} \times v_{b1}$$

$$\frac{v_{e1}}{v_{b1}} = \frac{R_{ib2}}{R_{ib2} + r_{e1}}$$

$$= \frac{203.5}{203.5 + 0.833}$$

$$= 0.996$$

$$R_i = R_{BB} / (1 + \beta_1)(r_{e1} + R_{ib2})$$

$$= 500 / [21 \times (.833 + 203.5)] \ k\Omega$$

$$= 0.448 \ M\Omega$$

$$= 448 \ k\Omega$$

(d) In Figure (4.10) let us connect v_s with it internal resistance $R_s = 100 \ k\Omega$, and replaceing Q_1 by its internal resistance R_i we get:

$$\frac{v_{b1}}{v_s} = \frac{R_i}{R_i + R_s}$$
$$= \frac{448}{448 + 100}$$
$$= 0.818$$

(e) finally the overall gain is (note that $v_{e1} = v_{b2}$):

$$\frac{v_o}{v_s} = \frac{v_{b1}}{v_s} \times \frac{v_{e1}}{v_{b1}} \times \frac{v_o}{v_{b2}}$$
$$= 0.818 \times 0.996 \times 0.988$$
$$= 0.805$$