
Chapter 15

Oscillatory Motion. Solutions of
Selected Problems

15.1 Problem 15.18 (In the text book)

A block-spring system oscillates with an amplitude of 3.50 cm. If the spring constant is 250
N/m and the mass of the block is 0.500 kg, determine

(a) the mechanical energy of the system,

(b) the maximum speed of the block, and

(c) the maximum acceleration.

Solution

(a) The total energy of the system equals maximum kinetic energy or the maximum potential
energy. Using the latter definition, we get:

E =
1

2
kA2

=
1

2
× 250 (N/m)× (3.5× 10−2 (m))2

= 0.153 N/m2

= 0.153 J
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(b) The maximum speed of the block is given by:

vmax = Aω = A×
√

k

m
= 3.5× 10−2(m)×

√
250 (N/m)

0.500 (kg)
= 0.783 m/s

(c) The maximum acceleration is:

amax = Aω2 = A× k

m
= 3.5× 102 (m)× 250; (N/m)

0.500 (kg)
= 17.5 m/s2
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15.2 Problem 15.37 (In the text book)

Consider the physical pendulum of Figure (15.18).

(a) If its moment of inertia about an axis passing through its center of mass and parallel to
the axis passing through its pivot point is ICM , show that its period is

T = 2π

√
ICM + md2

mgd

where d is the distance between the pivot point and center of mass.

(b) Show that the period has a minimum value when d satisfies md2 = ICM .

Figure 15.18:

Solution

(a) The period of a physical pendulum is given by:

T = 2π

√
I

mgd
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where I is the moment of inertial about an axis through the point of suspension of the
pendulum and d is the distance between the center of mass and the point of suspension.
We are given the moment of inertial of the pendulum ICM about an axis through the
center of mass and parallel to the the axis through the pivot. Using the parallel axis
theorem, we get:

I = Icm + md2

The period of the pendulum is then given by:

T = 2π

√
Icm + md2

mgd

(b) The period depends on d the distance between the pivot and the center of mass. So, to
find the value of d that minimizes the period T we set the first derivative of of T with
respect to d to zero,

dT

dd
= 0

0 =
d

dd

{
2π

√
Icm + md2

mgd

}
= 2π

d

dd

{√
Icm + md2 × (mgd)−1/2

}
= 2π

{√
Icm + md2 ×−1

2
× (mdg)−3/2 ×mg + (mgd)−1/2 × 1

2
× (Icm + md2)−1/2 × 2md

}
=

−π(Icm + md2)mg√
(Icm + md2)(mgd)3

+
2π(md)(mgd)√

(Icm + md2)(mgd)3

= π
2(md)(mgd)− (Icm + md2)mg√

(Icm + md2)(mgd)3

= π
2(md2)(mg)− Icmmg − (md2)(mg)√

(Icm + md2)(mgd)3

= (md2)(mg)− Icmmg

= (md2)− Icm

or

ICM = md2
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15.3 Problem 15.43 (In the text book)

A 10.6-kg object oscillates at the end of a vertical spring which has a spring constant of
2.05 × 104 N/m. The effect of air resistance is represented by the damping coefficient b =
3.00 N · s/m.

(a) Calculate the frequency of the damped oscillation.

(b) By what percentage does the amplitude of the oscillation decrease in each cycle?

(c) Find the time interval that elapses while the energy of the system drops to 5.00% of its
initial value.

Solution

(a) The natural angular frequency of the system ω◦ is:

ω◦ =

√
k

m
=

√
2.05× 104 (N/m)

10.6 (kg)
= 43.98 (N/kg·m)

1
2 = 43.98 (kg·m/kg·m·s2)

1
2 = 43.98 s−1

The angular frequency ω with damping is:

ω =

√
ω2
◦ −

(
b

2m

)2

=

√
(43.98 s−1)2 −

(
3.00 (N · s/m)

2× 10.6 (kg)

)2

= 43.97 s−1

f =
ω

2π

=
43.97

2π
= 7.00 Hz

(b) The position of the of the mass x is given by:

x = A◦e
−bt/2m cos(ωt + φ)
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Where A◦ is the amplitude without damping and A◦e
−bt/2m is the amplitude with damp-

ing at a time t. After one period the amplitude becomes A◦e
−b(t+T )/2m and the fractional

change ∆A/A is then:

∆A

A
=

A◦e
−bt/2m − A◦e

−b(t+T )/2m

A◦e−bt/2m

=
A◦e

−bt/2m
[
1− e−bT/2m

]
A◦e−bt/2m

= 1− e−bT/2m

Since T = 1/f , we get:

∆A

A
= 1− e−bT/2m

= 1− e−b/2mfω

= 1− e−3.00/(2×10.06×7) = 1− e−2.02×102

= 1− 0.98

= 0.02 = 2.00%

(c) The total energy of the system is:

E =
1

2
kA2

=
1

2
kA2

◦e
−2bt/2m

= E◦e
−bt/m

where E◦ = 1
2
kA2

◦ is the total energy without damping. The time after which the total
energy drops by 5% is then:

E = 0.05E◦

= E◦e
−bt/m

0.05 = e−bt/m

20.0 = ebt/m

t =
ln(20)×m

b

=
ln(20)× 10.6 (kg)

3.00 (N · s/m)
= 10.6 s
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15.4 Problem 15.56 (In the text book)

A solid sphere (radius = R) rolls without slipping in a cylindrical trough (radius = 5R) as
shown in Figure (15.56). Show that, for small displacements from equilibrium perpendicular
to the length of the trough, the sphere executes simple harmonic motion with a period

T = 2π

√
28R

5g

θ

h
s

Figure 15.56:

Solution

The kinetic energy K of the ball is coming from the translational and angular motions. Let
v be the linear velocity of the center of mass of the ball and the Ω is the angular velocity of
the rolling motion of the ball, we then have:

K =
1

2
mv2 +

1

2
IΩ2
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where I = (2/5)mR2 is the moment of inertia of the ball around its center of mass. The
center of the ball moves along a circle of radius 4R, and its displacement from the equilibrium
position is s = 4Rθ. The linear velocity v of the the center of the ball is then:

v =
ds

dt
= 4R

(
dθ

dt

)
Since the ball is rolling without slipping, we get:

v =
ds

dt
= RΩ = 4R

(
dθ

dt

)
and

Ω =
v

r
= 4

(
dθ

dt

)
The kinetic energy then becomes:

K =
1

2
m

(
4R

dθ

dt

)2

+
1

2

(
2

5
mR2

) (
4
dθ

dt

)2

=
112mR2

10

(
dθ

dt

)2

When the ball is displaced by an angle θ, its center is higher than its equilibrium position
by a distance h,

h = 4R(1− cos θ)

Since sin2
(

1
2
θ
)

can be written as:

sin2

(
1

2
θ

)
=

1

2
(1− cos θ)

for a small sin θ ≈ θ, so:

1− cos θ ≈ 1

2
θ2

The change in the potential energy of the displaced ball (for small angles) U = mgh =
4mgR(1− cos θ) = 2mgRθ2. The total energy E of the ball is then:

E = K + E =
112mR2

10

(
dθ

dt

)2

+ 2mgRθ2

Since the total energy is constant in time, we get:

dE

dt
= 0

=
112mR2

5

(
dθ

dt

) (
d2θ

ddt2

)
+ 4mgRθ

(
dθ

dt

)
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dividing the last equation by 4mR
(

dθ
dt

)
we get:

28R

5

(
d2θ

dt2

)
+ gθ = 0

or
d2θ

dt2
= −

(
5g

28R

)
θ

The last equation is a that of a simple harmonic motion with angular frequency ω given by:

ω =

√
5g

28R

and the period of the simple harmonic motion is:

T =
2π

ω
= 2π

√
28R

5g
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15.5 Problem 15.71 (In the text book)

A block of mass m is connected to two springs of force constants k1 and k2 as shown in
Figure (15.71a) and Figure (15.71b) Figures. In each case, the block moves on a frictionless
table after it is displaced from equilibrium and released. Show that in the two cases the
block exhibits simple harmonic motion with periods

(a) T = 2π

√
m(k1 + k2)

k1k2

(b) T = 2π

√
m

k1 + k2

Figure 15.71:

Solution

(a) When the block is displaced a distance x from the equilibrium position, spring 1 is
stretched a distance x1 and spring 2 is stretched a distance x2.There is one force acting
through out the system shown in Figure (15.71a), so

k1x1 = k2x2
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in addition, the blocks displacement is the sum of the the distances that the two springs
stretched through, i.e.

x = x1 + x2

We then find:

x = x1 +
k2

k2

x1 =

[
1 +

k1

k2

]
x1 =

[
k1 + k2

k2

]
x1

x1 =

[
k2

k1 + k2

]
x

The force F acting on either spring is then:

F = k1x1 =

[
k1k2

k1 + k2

]
x = keffx

where:

keff =
k1k2

k1 + k2

The period T of the motion is then:

T = 2π

√
m

keff

= 2π

√
m(k1 + k2)

k1k2

(b) In this case (see Figure (15.71b)), when the block is displaced a distance x, then, one
spring is stretched a distance x and the other is compressed by the same distance x.
Therefore, the block is acted upon by two forces acting in same direction which is
opposite to the direction of the motion of the block, so:

F = −(k1 + k2)x = keffx

where keff = k1 + k2, the period T of the motion in this case is then:

T = 2π

√
m

kff

= 2π

√
m

k1 + k2
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