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Abstract

Industrial forest plantations can contribute to the conservation of the
remaining world forests. Mathematical models are fundamental for the ra-
tional management of forests, and especially for the intensive management
of such plantations. Some examples and modelling issues will be exam-
ined, focusing on two types of problems. One is the prediction of tree
growth and development under various silvicultural alternatives. Con-
ceptual, data gathering, and statistical aspects will be discussed. The
other concerns cutting and planting decisions at the enterprise, regional,
or national level. Fluctuating production over time from mixtures of units
having various ages, productivities and silvicultural treatments gives rise
to complex decision problems. Simulation and Linear Programming based
approaches are commonly used.

Forestry information and modelling systems

A forestry organization dealing with intensively managed wood production plan-
tations should have a system similar to that depicted in Fig. 1. Arrows indicate
outputs used by other components. The focus here is in decision support for
forest management planning. Obviously, there is much more necessary infor-
mation that has not been included in this view, such as the technical details of
establishment techniques, nutrition, tree improvement, etc.

The functions of this information and modelling system are prediction, con-
trol, and monitoring. That is, figuring out what will happen, what is happening,
and what has happened. A stand database keeps track of the current state of
the forest. This data is collected through periodic forest inventories, and it may
be kept up-to-date with the help of growth models. In most instances the eval-
uation of stand management alternatives on a per-hectare basis is inadequate,
and planning must take care of forest-wide considerations (or region-wide, or
nation-wide, depending of the agency doing the planning). This is the purpose
of the forest planning or forest estate models [1, 2]. They use the stand data,
and require also growth predictions, and financial and other resource informa-
tion. Conversion and logging models may help to estimate yields and costs as a
function of projected stand conditions. Growth models [1, 3] are developed and
validated with data from remeasured, or permanent, sample plots (PSPs).
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Figure 1: Forestry DSS

A tractable nonlinear system

The theory and practice of linear systems is well developed. Unfortunately, for
many purposes a linear model is not realistic. With a single state variable z,
more flexibility can be achieved by substituting in the transition equation a
power transformation z¢ in place of z, where ¢ is a constant. That is, using
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The growth curves derived from it are one of the most popular nonlinear models
used in Forestry, Fisheries, etc.
For an n-dimensional state vector x we can use, in place of the state variables
z;, power transformations of the form
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Assembling the transformation exponents ¢;; into a matrix C, and defining

exp[Clnx] = x©

the extended model can be written
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—— =Ax%+b
dt b
the “multivariate Richards model” [3].
It works fairly well. Full maximum likelihood estimation is possible under
a reasonable stochastic differential equation model [3, 5]. One problem is that



to ensure monotonic trends many of the coefficients have to be made zero in
an ad hoc way (we do not like trees to shrink, or numbers of trees to increase).
Finding the most general conditions that would ensure monotonicity (between
the origin and the asymptotes / stationary point) is an open question. It would
also be nice to have alternative flexible, closed-form integrable models.

Some open questions in forest planning

Consider the following model:

Characterize a homogenous forest at time ¢ by its age distribution, that is,
the number of hectares z;; in each age classi =1,...,n. Ateacht=0,1,2,...,
we can cut 0 < uy < x4z hectares from each age class, yielding volumes of y;
cubic meters per hectare. Therefore, the volume cut in period ¢ is v; = > y;u.
The remaining areas move into the next age class in the next time period (if
necessary we may take the last age class as open, or n as infinite, for example).
The area cut goes into the first age class in the next period.

If necessary, we can assume that the yield function y; is positive, increasing,
and perhaps concave over the range where cuts are made.

Also, cuts may be restricted to be done “oldest first”, i.e., cut all of a class
before advancing to the next lower one. This is optimal under fairly general
conditions.

An analogous continuous model — with continuous age distribution, contin-
uous yield function, and continuous time — could be used and might be easier
to handle in some instances.
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Figure 2: Forest planning problem structure

Notes: Of course, this model is an oversimplification, but finding nice so-
lutions for it would be a big step toward handling more realistic problems. In
practice there are different “crop types”, with different yields, etc, and usu-
ally also multiple products (see Fig. 2), financial objectives, and additional
constraints. Class/period width varies between 1 and 10 years, depending on
growth rates, problem size, and computing limitations.



Sustainability

To be specific and avoid unnecesary complications, take 1-year classes/periods,
and Y [ z; = 1.

Assume that the annual cut vy = v, taken oldest first, is constant. Clearly,
the initial distribution and v (and the fixed yield function) determine the evo-
lution of the forest.

It is easily seen that a uniform distribution with equal areas over the first
m classes and v equal to the volume in the last class (v = y,, /m) is stationary
(an equilibrium point). This is the classical “normal forest”, and y; /i is called
a mean annual increment, MAIL. Maximum volume production is obtained with
a normal forest where m (the rotation age) corresponds to the mazimum MAIL
that is, the maximum of y; /i over 4.

Much of forest management theory over the last few centuries has revolved
around these concepts, and the goal of aproaching normal forests is still taken
very seriously in many countries. For many reasons this is not very relevant in
modern plantation management, but it is a useful theoretical starting point.

What happens If we keep cutting v from an arbitrary initial distribution?
There are two eventual outcomes: (a) the forest is eventually exhausted, or (b)
it tends to a stable normal forest (except possibly for the last age class in the
discrete model). Obviously, for the equilibrium point (b) to exist v must be
not larger than the maximum MAI. Roughly, if v is smaller than the Maximum
MAI, there are two equilibrium normal forests corresponding to two solutions
of y; /i = v (at least in the continuous version of the model, which is less messy
for this analysis). It would seem that the one with the lower rotation is always
unstable, and the other stable.

All this is easy to verify by simulation. Given an initial distribution, cutting
a v equal or slightly less than the maximum MAI may lead to exhaustion, or
to an equilibrium. However, finding a condition for a distribution to be able to
sustain a given cut is, as far as I know, an open question.

Some simulations seem to suggest interesting dynamics (chaos?), especially
close to critical points. Unfortunately, the dimensionality of the system difficults
visualization, although at least the three age classes case could be managed more
eagily. All this is largely unexplored.

A variant of the problem is, as before, to find the maximum sustainable cut
if this is less than the maximum MAI. Otherwise, finding the maximum amount
of unplanted land that can be added to the forest (say to age class 1) before
that cut becomes unsustainable. These are the basis of Allison’s Equivalent
Normal Forest (ENF) measures of “maturity” [1]. Again, it is not known how
to compute these values without recurring to simulation.

Non-decreasing yield, etc

Having a constant cut is rather too restrictive and artificial. Production fluc-
tuations are costly, particularly when there are supply commitments, but it is
mainly the down-movements that have to be avoided. It is common, then to
impose a non-decreasing production constraint, that is, v < ver1. The objec-
tive may be to maximize a discounted value proportional to >~ atvy, subject to
these and possibly other constraints. This is done by a “brute force” approach
through Linear Programming. It seem that it should be possible, however, to



exploit the considerable special structure to do somewhat better.

Consider the following “bare bones” problem. We have an initial distribution
;0 = b;, and denote by z; the area from initial age class ¢ cut in period ¢.
Just ignore what happens after the first rotation. We can then formulate the

following LP problem:
max Z R
t

subject to:
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We can use that y; is positive, increasing, and concave. It is also known that
the oldest first principle is optimal here [2]. It seems increadible that even
this simple-looking problem could not be solved by other than a full-blown LP
approach!
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