Regression *

Oscar Garcia

Regression methods are fundamental in Forest Mensuration. For a more
concise and general presentation, we shall first review some matrix concepts.

1 Matrices

An order n x m matriz is simply a table of numbers with n rows and m
columns:

ai ai2 ctt Qln
azy a22 tet A2n

A= } ) ) = [ay;] -
Am1 Am2 ° Gmn

The a;; are the matrix elements. Instead of the square brackets, round
parenthesis or double vertical lines are also used: ||a;;||.

A wvector is a list of numbers. In matrix algebra they are taken as one-
row matrices (row vector) or one-column matrices (column vector). Unless
stated otherwise, we shall assume columns. They are usually represented by
lower-case letters, often underlined or in bold-face:

Tn

The transpose matrix is the matrix obtained exchanging rows and columns.
The transpose of A is denoted as A’ or AT
The sum of two matrices is the matrix of sums of their elements:

A+ B = [ag] + [bi] = [aij + bi] -

*Translated from Appendix B in Apuntes de Mensura Forestal — Estdtica, Universidad
Austral de Chile, Facultad de Ciencias Forestales, 1995




Obviously, A and B must be of the same order.

A single number, to distinguish it from a vector o matrix, is called a
scalar. The product of a scalar and a matrix is obtained by multiplying the
scalar and each of the elements of the matrix:

kA = k[ai;] = [kasj] -
From this, the subtraction or difference of matrices is
A-B=A+(-1)B=[a;; — b .
The matriz product AB = C is obtained in the following way:

[ei] = [D_ ainb] -
k

That is, the element 45 in the product is the sum of products of the elements
from row ¢ of A and those from column j of B. Clearly, for the product to
be defined the number of columns in the first matrix must equal the number
of rows in the second one.

Defining the product in this way is useful, for example, in handling
systems of linear equations. The system

a11x1 + a2 + -+ a1y, = bl
a1 1 + agry + -+ + agpry, = by
Am1T1 + Ama®2 + -+ GpnTn = by

can be written simply as

A sum of squares is

where
e=lelex- e .

Even if two matrices have the proper dimensions for calculating the
products AB and BA, in general the results are different (the matrix product
is not commutative). Other than this, and that the operations are not always
possible (certain relationships between numbers of rows and columns must



be satisfied), the sum, difference, and product of matrices behave as the
corresponding operations on scalars. For instance,

AB+C) = [ayllbi + cijl = D am(brj + cry)) = D airbrs + D acrj]
B P P

= AB+AC.

QUESTIONS, EXERCISES

1. Show that the sum is commutative, A + B = B + A, and associative,
(A+B)+C=A+ (B+0C).

2. Show that (AB)" = B’A’.

3. Compute AB and BA, where
2 1 30
A_[l 1] ’ B_[l 2]'

4. Compute x'y and y’'x, where

3 2
x=| -1, y= 1
4 -3

Note: Often a matrix with just one element is considered as a scalar.
5. Show that p(A+B) =pA +pBy (p+ q)A = pA + ¢A.
6. Show that the product is associative: (AB)C = A(BC).

The matrices with ones on the diagonal and zeroes elsewhere,

01 --- 0
I= . . . . ’

are known as identity. They act as the number 1 among the scalars; mul-
tiplying any matrix and the identity (of the proper order) does not change
it:

IA=AT=A.



Now for an analogue to scalar division. In the same way as subtraction
may be seen as summing a negative, a — b = a + (—b), division may be seen
as multiplication with a reciprocal: a/b = a(1/b) = ab™!, where b=1b = 1.
With matrices, the analogue of a reciprocal is the inverse,

ATTA=AATT =T,

Note that for this to make sense, A must be square (same number of rows
and columns). Even thus, not all square matrices have an inverse. Those
that do not have one are called singular.
Using the inverse we could write the solution of the equation system
Ax = b given earlier:
x=A"'b.

For this solution to exist, A must be square (m = n, that is, the number of
equations must equal the number of unknowns). In addition, for A not to
be singular, the equations must be “linearly independent” (there must be
no redundant equations). There are various methods for inverting matrices,
one of the most common being Gaussian elimination. This may be also used
to solve equation systems without computing the full inverse.

It is not difficult to verify the following properties:

(AB)"' =B 1A!
(A)h= (A7)
Finally, one can define vector and matrix derivatives. The derivative of
a matrix with respect to a scalar, and the derivative of a scalar with respect
to a matrix, are defined simply as the matrix of derivatives. It is then easy
to verify results like these (A and a contain constants):

dAx dx
[
dt dt
da'x .

dx

dx'x
2T 9
dx x
dx’'Ax
=(A+ A
T (A+A)x

etc. In general, the results are similar to those for scalars, taking into
account the no commutativity of products.



2 The least-squares method

Many mensurational methods are based on relationships between a depen-
dent variable and one or more independent variables. One is interested in
describing the relationship between the variables, or in estimating or predict-
ing the value of the dependent variable knowing the value of the predictors.
For instance, the relationship between heights and diameters may be used
to estimate the height of a tree knowing its dbh, which is more easily mea-
sured. Or estimate the volume knowing its dbh and height. Or predict the
volume of a stand at a given age.

As an example, take a relationship between two variables. It is useful
to make a scatter diagram, plotting the available observations with the pre-
dictor in the abcissa (“z-axis”), and the dependent variable in the ordinate
(“y-axis”). The graph on the left shows observations of height and dbh in a
stand of Fucalyptus nitens taken by the 1994 class.
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A curve like the one shown may be used for estimating the heights of trees
in the stand for which only the dbh is known. Clearly, knowing the dbh helps
in estimating the height, that is, contributes to reduce the uncertainty about
its value. The curve is a “model” that provides height values to be used in
place of the unknown ones, or that can serve as a summary description of the
observations. At any rate, it is convenient to have an equation for the curve
to facilitate its use, and the curve should pass “close” to the observations.

In some instances there are theoretical reasons that suggest a specific
kind of equation. In others, as in this example, the equation is purely em-
pirical, chosen with convenience and data-fitting criteria. In general, there
will be a class of equations or models y = f(x,b), where y is the depen-
dent variable, x is a vector of independent variables, and b is a vector
of parameters whose values will be determined for producing a good fit.
With a two-dimensional x we obtain a surface instead of a curve, and for



higher dimensions a hypersurface. To choose the equation form one may
use experience with similar problems, trial and error, graphs with transfor-
mations producing linear data trends, considerations about the form that
the curve should take for the extremes, etc. In the example we have used
H = f(D,b1,b3) = by + byln D, seeing in the right-hand-side scatter dia-
gram that the relationship between H and In D is roughly linear (note in
passing that extrapolation to small diameters outside the range of the data
eventually produces negative heights). It would be always possible to choose
a curve that passes close to each one of the observations. Although in some
sense this would describe perfectly the observed data, in general much less
irregular curves, with a small number of parameters, will produce better
estimates for future or unobserved values.

Once the form of the equation to be tried is decided, it is necessary
to choose parameter values that result in a good fit. It can be assumed
that, for a given D, the difference between the unknown H and f(D, by, bs)
would tend to be smaller if these differences are small for the observed
values. That is, b should be such that the absolute values of the deviations,
residuals or “errors” e; = H; — f(D;, by, be) are small for all the observations
(D;, H;). Obviously, if we try to reduce one e; beyond some point the other
e; will increase, so that we need some criterion that takes into account the
whole set of these. A possible criterion would be to minimize the sum of
absolute values Y |e;| (“Li-norm regression”). Another possibility would
be to minimize the largest error (minmax |e;|, the minimax criterion). The
criterion most commonly used, because of mathematical convenience and
of possessing in some instances certain statistical justifications that we will
examine later, is that of least-squares, which consists of minimizing 3" e?.

We have then a model y = f(x,b), n observations (y;,%;), i = 1,2,...n,
and we look for a b such that it minimizes

Yo = [vi— f(xDb)*.
i=1 i=1

Equivalently, we minimize the root mean square error (RMSE) \/% e,
which is a useful measure of goodness-of-fit. In general, this optimization
problem cannot be solved analytically, and it is necessary to resort to it-
erative numerical optimization methods. An important exception occurs
when the model is a linear function of the parameters b. In this linear re-
gression situation, it is possible to obtain explicit solutions for the optimal
(least-squares) values of the parameters or coefficients.

Our example of H vs D is an instance of linear regression. It can be



written
Yy = bl + b2$ )

with y = H, x =In D. This is a straight line, taking here the variable x as
predictor. In general, both y and x can be transformations of the original
variables. Ideally, the data would satisfy the n equations system

y1 = b1+ baxy
Y2 = b1+ baxo
Yn = b1 + bixy

which in matrix notation can be written as

Y1 1
Y2 B 1 i) bl
S N b

Yn 1 z,

y=Xb.

If we had n = 2, we would have a system of two equations in two unknowns
(b1 y b2), usually with a unique solution. In matrix terms, y = Xb with X
square and invertible has the solution b = X~ ly.

With n > 2, in general not all the observations are co-linear, and the
equation system is incompatible. The objective is to find a b such that the
approximation y &~ Xb is the best possible, in the sense of minimizing the
length |e| of the vector e = y — Xb computed from a generalization to n
dimensions of Pithagoras Theorem:

n
el? = 2 =¢ee.
le| ;

i—1

There are algorithms, based on matrix factorization, that produce di-
rectly the least-squares solution of y ~ Xb. These are used in the better
statistical packages. Sometimes, pseudoinverses or generalized inverses X~
are used, in terms of which the solution can be written as b = X~y. The
APL computer language to be used in the laboratories has a generalized
inversion and generalized matrix division operator that makes very simple
the computation of linear regressions. In APL notation, the matrix product
Xb is (indicating that we are dealing with sums of products). The



coefficients can be obtained with the generalized inverse, or,
preferably, with the generalized matrix division

Before presenting the least-squares solution most commonly used in text-
books and manual calculations, let us examine the more general multiple
linear regression situation, where in contrast to the previous simple linear
regression example in which there was just one predictor x there are now p
predictors. The model is

y:b1x1+b2x2+...bp:cp:b’x:x’b.

Simple linear regression is the special case p = 2, b = (b1,b2), x = (1, ).
The system of equations, including now the deviations e;, is

y1 = bizi +baria + -+ by + e

y2 = bizar +bowoy + -+ + bpwoy + €2

Yn = brxpi +bowpe + -+ bpxnp +en

that is,
Y1 T11 T2 - T1p by e1
Y2 Tl T2 v Ty bo €2
= . . . . +
Yn Tpl Tp2 - Tpp bp €n
y=Xb+e.

The matrix equation is the same as before, again we have to minimize
€’e, and the direct factorization and APL solutions do not change. Almost
always a constant is included in the model, and then z; and the x;; equal 1.

The most usual explicit solution form is obtained as follows. To minimize
the sum of squares Q = €’e, we make the derivative equal to zero:

Q = ee=(y—Xb)(y—Xb)
vy — 2y'Xb + b'X’Xb

dQ

= 22X 2X'Xb =
b y + 0,

what gives us the normal equations:

X'Xb = X'y .



The p equations may be solved numerically for the p unknowns b. The
solution may also be written explicitly:

b= (X'X)"X'y.

The goodness of fit can be evaluated through the sum of squares €’e,
through the root mean square error RMSE = y/e€’e/n, or the standard
error SE = y/e€’e/(n — p). The number of parameters p in the SE penalizes
somewhat the complexity of the model when comparing alternatives, and
has also a statistical justification explained in the following section.

Although this expression is useful in theoretical derivations, in general it
is not the most advisable from the numeric point of view. First, the normal
equations system can be solved with less work that that necessary for com-
puting the inverse and the matrix product. Second, important catastrophic
cancellation errors can occur, similar to those for the computation of vari-
ances demonstrated in the error propagation section. As already mentioned,
the most accurate procedures are based on the factorization of X.

When the model includes a constant (column of ones in X), cancellation
errors in the normal equations can be much reduced by “centering” the
variables, as in the case of the variance, using deviations from the means
instead of the original variables. For a model y = by + x’b + ¢ it is seen
that with the least-square parameters the means satisfy 3 = by + X’b, since
the first of the normal equations ensures that the sum of residuals is zero:
0 =X'(y — Xb) = X’e. Subtracting, we have the equivalent model y — § =
(x —X)'b + e. We estimate b with this model, and the constant is obtained
from by = y — X'b.

QUESTIONS, EXERCISES

1. Estimate b in the model y = b + e. Do you recognize the result?

-1
a b _ 1 d -b
c d Cad—bc| —c a '
Use this to obtain formulas for the two parameters in simple linear
regression (with the original variables).

2. Verify that

3. Obtain formulas for simple linear regression using the centered vari-
ables (deviations from the means).

4. Estimate by least squares the parameters of the model y = by + box +
bsz2. Use centered variables.



5. Research the solution of linear equation systems and matrix inversion
by Gaussian elimination.

3 Statistical considerations

We have presented least squares as a more or less reasonable and mathe-
matically convenient method for “fitting” functions to observed data. Under
certain probabilistic models for the deviations, the least squares criterion can
also be justified by statistical arguments.

Assume first that the observations y; are generated according to a model

/
yi=x;8+¢i,
where the ¢; are uncorrelated random variables with mean 0 and unknown
variance 2. That is,

Ele] =0, E[e?] =02, Eleig;]=0sii#j,

)

or, with matrix notation,

where V[-] is the covariance matrix. The x; are known predictor vectors,
and 3 is a vector of unknown parameters to be estimated.

We look for an estimator 3 = b unbiased, i. e. E[b] = 8, and with a
variance as small as possible. Let us restrict the search also to estimators
that are linear functions on the observations, b = Ay for some matrix A.
Then, the Gauss-Markov theorem says that for the linear minimum variance
unbiased estimator A = (X'X)~!X’. This is the least-squares estimator.

The restriction to estimators that are linear on the observations may
seem somewhat arbitrary. If we add the assumption that the deviations
follow a normal distribution, the least squares criterion is obtained through
a different route. Let the model, not necessarily linear, be

yi = f(xi,0) + €

with the &; normal, with mean 0, variance o2, and independent. That is,

y=£fX,8)+e,

e ~ N(0,0%0) .

10



The likelihood function is the probability of the model generating data
like the observed. The mazimum likelihood (ML) estimation method consists
of estimating the unknown parameters as the values that maximize this
function. Besides being intuitively reasonable, the MV estimators have a
number of desirable statistical properties, especially in large samples.

Here the likelihood function equals the joint probability density of the y;,
considered as a function of 3 and ¢2. From the independence assumption,
the joint density is the product of the (normal) densities of each y;:

L= fi(y1)f2(y2) - falyn)

vt i — FG )Y
1 Y; — X,
fl(yl) - WQXP[_ 9202 ] :
The likelihood is then
> e;

L=

(Vo) =51

Clearly, the 3 that maximizes L is that which minimizes the sum Y e?. We
conclude that, under this model, the ML estimator of 3 is the least-squares
estimator.

It is also found, taking the derivative of L with respect to 2 and making
it equal to zero, that the ML estimator of o2 is mean square error (MSE)
S €2/n =Y €?/n, the square of the RMSE. The expected value of 3" e, for
linear models, turns out to be (n — p)o?, so that the MSE is biased. It is
customary to use the unbiased estimator SE? for the residual variance o2,
and the standard error SE as estimator for o.

Another goodness-of-fit indicator often used, incorrectly, is the coefficient
of determination R* = 1 — MSE/S?, where S} = > (y; — )?/n is the vari-
ance of the observations y; when the predictors are ignored. For comparing
models with the same data, R? provides the same information as the MSE
or RMSE. With different data sets, however, an R? close to one does not
imply necessarily a tight relationship or a good model. Among other things,
the total variance depends of how the sample has been selected, and unless
this can be considered as a random sample from a multivariate distribution,

it does not represent a characteristic of the population.

QUESTIONS, EXERCISES

1. Compute a linear regression between y and x with the following data:

11



4 5 6 7 8 9 10
16 25 36 49 64 81 100

x|[1 2 3
y|1 4 9
2. Compute R2.

3. Plot the data and the regression line.

O Tt is seen that for the linear regression
Eb] = (X'X)"'X'Ely] = (X'X)'X'XB =3,

so that b is an unbiased estimator. The same happens with any function linear
on the parameters, and, in particular, the prediction expected value §(x) = x’'b
equals y(x) = x’3 for any x.

Because the covariance matrix V[Az] for a linear transformation is AV[z]A’, it
is found that

V[b] = o*(X’X)" 1.

If € is normal, this and the fact that any linear transformation of a normal vector
is normal allow us to obtain confidence intervals and hypothesis tests for linear
functions of b.

Obviously, in real life these statistical models cannot be expected to be
fulfilled exactly. But it can be expected that the more we approach the
assumptions, the better the estimators will be. For instance, if it is seen
that the scatter of the residuals is not quite uniform (heterocedasticity), it
would be advisable to employ some transformation that changes this situa-
tion. Another possible problem is the presence of autocorrelation (correla-
tion among consecutive measurements). In particular, hypothesis tests are
subject to the plausibility of the statistical model.

(OGeneralized least squares Assume that in the linear model the covari-
ance matrix for € has the form ¢?W, with a known matrix W # I. Maintaining
the other assumptions, it is then found that both the minimum variance unbi-
ased and the ML estimator are obtained by minimizing €' W~!e. The solution is
b= (X'WIX)"1X'W~1ly.

A good introduction to statistical inference is found in Chapter 2 of
Graybill, for which there is a Spanish translation among the course materials.
A general text with a good treatment of linear regression is Penia Sénchez de
Rivera, D. “Estadistica, Modelos y Métodos” (2 Vols.), Alianza Editorial,
Madrid, 1992.
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