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All measurements are subject to error and uncertainty. Error sources
are varied, and could be classified in many ways. For instance, there are
what we might call “mistakes”, due to wrong readings on an instrument
scale, transcription errors, etc. There are instrumental errors, due to defects
or bad use of an instrument Personal errors, caused by deficiencies in the
observer senses, or by subconscious influence of his interests or preferences.
Very important and often ignored are errors due to the model; for instance,
in most calculations with tree diameters and cross-sections it is assumed
that the cross-section is circular. Systematic errors are those that always
act in the same direction.

In relation to an instrument or method that generates a (real or hypo-
thetical) series of measurements, it is useful to distinguish between accu-

racy and precision. Accuracy refers to the closeness between measurements
and the true value. Precision has to do with consistency, closeness of the
measurements among themselves. Measurements can be precise but inaccu-
rate. Some authors understand accuracy as the absence of systematic errors
(“bias”), closeness of the measurements mean to the true value.

1 Error bounds

In engineering calculations it is common to work with uncertainties or esti-
mated errors assumed to span the true value. That is, a value is given as
x±∆x, where x is the estimated value and ∆x is a maximum error bounding
the true value (it is taken as a positive number, the error absolute value).
In other words, by error here we understand an error bound.

In particular instances the error in the result of calculations with quan-
tities subject to error can be determined by substituting all possible combi-
nations of negative and positive errors, and taking the extreme results (the
combinations to be tried can be reduced if it is clear which are the most
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unfavorable situations). It is a good idea to do this in important instances.
The methods described below are more convenient, and can provide useful
relationships between errors and variables.

It is clear that in a sum or difference errors add up, because they are
assumed independent and the direction of their action is unknown (for a
bound, the most unfavorable situation must be taken):

(x±∆x) + (y ±∆y) = (x+ y)± (∆x+∆y)

(x±∆x)− (y ±∆y) = (x− y)± (∆x+∆y) .

Multiplication and division is somewhat more complicated:

(x±∆x)(y ±∆y) = xy ± x∆y ± y∆x±∆x∆y .

The last term is small relative to the others, and omitting it we can write
(assuming that x and y are positive)

(x±∆x)(y ±∆y) = xy ± xy(∆x/x+∆y/y) .

∆x/x is the relative error for x (while ∆x is the absolute error). It is seen,
then, that the relative error for the product is approximately the sum of the
relative errors for the factors. The same happens with division.

More generally, the error for a function of x and y may be approximated
by the initial terms of its Taylor series:

g(x+∆x, y +∆y) = g(x, y) +
∂g(x, y)

∂x
∆x+

∂g(x, y)

∂y
∆y + . . . .

The omitted terms contain products of errors and, as in the multiplication,
can be neglected if the errors are not too large. Considering the uncertainty
in the error signs, we find then that in the worst case the error in g is
approximately
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The generalization to any number of variables is obvious.
Let us see two simple examples.

(i) Let z = g(x, y) = xy. Then

∆z = |y|∆x+ |x|∆y ,

which agrees with the results above.
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(ii) The error in the one-variable function g(x) = lnx is

∆ lnx =

∣

∣

∣

∣

1

x

∣

∣

∣

∣

∆x =
∆x

x

(x must be positive), so that the relative error in x is approximately

equal to the absolute error in lnx.

Questions, exercises

1. Use the relationship lnxy = lnx + ln y and the result from example
(ii) to obtain the relationship between the relative errors of xy, x and
y. Obtain also the relative error of x/y.

2. Calculate the error (bound) for a tree height given the errors in the
distance measurement and in the top and base angle measurements.

3. Assume that the height error is dominated by the error in the angle α
between the top and the horizontal, and that this error is independent
of α (other errors are negligible). Show that the error is a minimum
when α = 45◦.

2 Significant figures

Using significant figures is an alternative to expressing an error as x±∆x.
Significant figures are the digits, excluding zeros used only for establishing
the position of the decimal point. For instance, the numbers 1302, 0.8206,
0.0002135, 60.60 and 1.490 × 103, all have 4 significant figures. Without
further information, it is nor known if 1490 has 3 or 4 significant figures.

The indication of errors through significant figures is not fully standard-
ized. Usually, uncertainty in the last given figure is assumed, with that digit
giving an idea of the most likely value (the figures “signify something”).
Some authors (e.g. Husch) use an stricter criterion, that the error must not
exceed one unit in the last figure. Others accept some uncertainty in the
before-last figure. In general, it is considered that it does not make sense
to specify more than one or two figures in ∆x, and that x should be given
up to the digit corresponding to the last figure in the error. 15.04± 0.15 is
correct, not 15.036 ± 0.15. More figures would suggest false accuracy, less
would result in unnecessary accuracy loss.

Anyhow, the number of significant figures reflects the relative error, while
a number of decimal places reflects absolute error. The precision indicated
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by significant figures, or the relative error, are independent of the measure-
ment units: 3.24 m and 324 mm carry the same precision.

These relationships between figures and errors allow us to establish cer-
tain rules about the significant figures to be used in results from arithmetical
operations. The error in a sum or difference is dominated by the largest ab-
solute error in their components (as seen above, maximum errors add up;
other error measures combine with less weight on the smaller errors, as will
be seen below). Therefore, a rule is adopted to give the result with a num-

ber of decimal places equal to the least number of decimal places among the
terms added or subtracted:

123

32.3

+ 0.276

-------

156

In multiplication and division the same happens with the relative errors, so
that in the result the least number of significant figures among the factors
is used:

754.1 x 0.052 = 39

In the intermediate steps of a calculation sequence it is advisable to retain
additional figures, and round the final result.

It is important to take into account that in some operations important
losses of significant figures (precision) can occur. This is the case of “catas-
trophic cancellation” when subtracting large nearly equal numbers.

Questions, exercises

1. Indicate the number of significant figures in: (a) 1.00025 (b) 0.002710
(c) 10.003 (d) 100000

2. In the examples of sum and multiplication just given, assume errors
of ±2 units in the last significant figure. Compute the error limits by
extreme value substitution. Compare to the significant figures.

3. In an evaluation of silvicultural regimes, incomes of $3,274,531 and
costs of $3,256,890 are obtained. Compute the expected profit.
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(a) Assume now an error of about 1%. Repeat the profit calculation
using the appropriate number of significant figures. What can
you say about the profitability?

(b) With the 1% errors, obtain error limits by substituting the most
optimistic and most pessimistic values.

4. A sample variance can be computed as 1

n

∑

(xi − x̄)2, where x̄ is the
mean 1

n

∑

xi. It is often suggested to simplify calculations by using
the formula 1

n

∑

x2
i − x̄2.

(a) Show that both formulas are mathematically equivalent.

(b) Compute with both formulas the variance for the three numbers
x1 = 100001, x2 = 100002 and x3 = 100003. What happens?

♥ The statistical approach

In calculating error limits we took the most unfavorable situation, with signs for the
various errors such that the error in the result is the largest possible. For instance,
when adding x to y it is assumed that ∆x and ∆y act in the same direction, positive
or negative, compounding their effects. This is useful because it provides an upper
error bound. However, specially with several variables, these limits may be too
wide to be useful, and it may seem unrealistic for all errors conspiring to produce
the worst possible result. Instead of error limits, it is therefore possible to work
with a statistical or probabilistic model of measurement uncertainty.
Statistics deals with the use of information in situations of uncertainty. It

uses Probability Theory, which deals with the mathematical properties of some
uncertainty models.

An uncertain quantity can take any value within a set of possible values. Some
values are more plausible than others, so that we give them different weights. These
weights might represent relative frequency under repeated observation, a subjective
degree of credibility for the various values, etc. In the model we represent the
uncertain quantity by a random variable, and the weights by a probability. As
always, the theory and mathematical manipulation of the model are independent
of its interpretation, but obviously this is important when assessing the applicability
of the results.

For now, we consider quantities that take on numerical values, so that the
weights can be represented by a probability density function defined on the real
numbers. The probability for the random variable X to be between a and b is
∫ b

a
f(x) dx. Obviously,

∫∞

−∞
f(x) dx = 1. Sometimes it is convenient to distinguish

between the random variable X and the observed values x.
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PRACTICAL SITUATION PROBABILISTIC MODEL
Uncertainty in x ; X is a random variable
Weighting of possible values ; density f(x)
Weighted mean of g(x) ; expected value E[g(X)]
The expected value or expectation of a function g(X) is the weighted mean

E[g(X)] =

∫ ∞

−∞

g(x)f(x) dx .

Important special cases:
Mean: E[X] = µ

Variance: E[(X − µ)2] = E[X2]− (E[X])2 = σ2 = V [X] .

The meal is a measure of location, the center of gravity around which uncertainty
is distributed. The standard deviation σ =

√
σ2 is an important measure of spread.

Back to errors, let us represent a measurement or observed or calculated value
by a random variable X, and denote the true value as x0. The error (another
random variable) is ε = X − x0, that is, X = x0 + ε. Then, E[ε] = µε is the bias.
A measure of precision is the standard error

√

V [ε] = σε (it is common to call
standard error to the standard deviation of an estimator). Another measure that
combines accuracy and precision is the mean squared error : MSE =

√

E[ε2]. Note
that

MSE2 = σ2
ε + µ2

ε = variance + bias
2 .

The error bound or absolute maximum that we used previously would be (if it
exists): ∆x = max |ε|, and the relative one, ∆x/x0 (or ∆x/(x0+ε) which is almost
the same if the error is small).

To study the propagation of errors when computing with variables subject to
error (random variables), we need some simple properties of expectations and vari-
ances. From its definition as integral it is easily found that expectation is a linear
operator:

E[aX + bY ] = aE[X] + bE[Y ] .

Let us find the variance of a linear combination.

V [aX + bY ] = E[(aX + bY − E[aX + bY ])2] = E[{a(X − E[X]) + b(Y − E[Y ])}2]
= E[a2(X − E[X])2 + 2ab(X − E[X])(Y − E[Y ]) + b2(Y − E[Y ])2]

= a2V [X] + b2V [Y ] + 2abE[(X − E[X])(Y − E[Y ])] .

The expectation in the last term is the covariance between X and Y , Cov[X,Y ].
Therefore we have

V [aX + bY ] = a2V [X] + b2V [Y ] + 2abCov[X,Y ] .

The covariance is related to the correlation coefficient

ρ =
Cov[X,Y ]
√

V [X]V [Y ]
,
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which is zero if X and Y are independent (more precisely, uncorrelated), and can
reach 1 if X and Y tend to vary jointly or −1 if the vary in opposite ways. Finally,
note that if a is not random,

V [X + a] = V [X] .

♥♥ The density f(x) that defined the probability for intervals on the x line
generalizes to higher-dimensional spaces. For instance, the joint density f(x, y)
applied to the plane of points specified by coordinate pairs (x, y). (These pairs and
their analogs in more dimensions can be seen as lists of numbers, or vectors). It is
said that the random variables X and Y are independent if their joint density is
of the form f(x, y) = f1(x)f2(y). A consequence that derives from the definition
of expectation as a multiple integral is that if the variables are independent, then
E[XY ] = E[X]E[Y ]. It is easily verified that this implies Cov[X,Y ] = 0. It may be
mentioned that zero covariance (uncorrelated variables) does not necessarily imply
independence, except in the important case of the Normal distribution.

We are ready now to examine error propagation. Let us see first the addition
case.

E[εx+y] = E[(X + Y )− (x0 + y0)] = E[εx + εy] = E[εx] + E[εy] ,

so that biases add up.

V [εx+y] = V [εx + εy] = V [εx] + V [εy] + 2Cov[εx, εy] .

If errors act independently, it is seen that the standard error for the sum is

σx+y =
√

σ2
x + σ2

y .

Measured this way, the error grows more slowly than the maximum error ∆.
For the general case we use, as before, the Taylor series:

εg = g(X,Y )− g(x0, y0) = g(x0 + εx, y0 + εy)− g(x0, y0)

≈ ∂g(x0, y0)

∂x0

ε0 +
∂g(x0, y0)

∂y0

εy ,

Assuming independent errors, we have then approximately

σ2
g =

(

∂g(x0, y0)

∂x0

)2

σ2
x +

(

∂g(x0, y0)

∂y0

)2

σ2
y .

In the derivatives we could have used the means or the observed values, instead of
the actual values x0 e y0. The approximations would still be valid, provided that
the errors are not too large.

7



Let us use this to calculate the standard error for a logarithm:

σ2
ln x = (1/x0)

2σ2
x .

Using the mean instead of x0,

σln x = σx/µx .

The expression in the right-hand-side is the coefficient of variation (CV) for x.

Questions, exercises

1. Obtain an expression for the coefficient of variation of the product of two
independent variables X and Y as a function of the coefficients of variation
of the factors.

2. For the previous problem, graph CV(XY )/CV(X) over CV(Y )/CV(X) for
CV(X) > CV(Y ). What effect have the smaller and larger errors on the
error of the result? Implications for model building?
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