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1 Introduction

Mixed e�ects models is a fashionable and controversial topic. Most presen-

tations and applications are somewhat obscure in relation to the underlying

reasoning, assumptions, and motivation. A great deal of black magic and

�expert opinion� tends to be involved. This is an attempt at explaining as

clearly and precisely as I can my understanding of the subject. It is possible

that I might be oversimplifying and missing out on something very profound,

although I doubt it. It is useful to study this together with the material in

Lab 12.

These models are the most important tools used in so-called Multilevel Anal-

ysis, which deals mainly with hierarchical models. The three concepts are

interrelated and sometimes used as synonyms. They have in common the

idea of having several types of unit of analysis, not just one as in most of the

rest of statistical inference. Often these are nested into a number of hierar-

chical levels, such as students within classrooms within schools, employees

within departments within �rms, or successive measurements within trees
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within stands within forests. However, levels in multilevel analysis may also

be crossed rather than nested, they may belong to a relationship network

more general than a hierarchical tree. And mixed e�ects models can deal

with levels (or e�ects) that are not in a hierarchy. And as seen below, mul-

tilevel and hierarchical data can be modelled and analyzed without mixed

models. But the hierarchical case with levels nested within other levels is

the most common, and the examples will focus on that.

A good entry point to the literature is the article by Snijders on Multilevel

Analysis in The SAGE Encyclopedia of Social Science Research Methods,

2003.

2 Multilevel models, �xed e�ects

We use a simple example, see Lab 12 for computational and other details.

On 14 loblolly pine trees, heights have been measured at 5-year intervals.

We use as the response the 5-year height increments, and as a predictor the

height at the start of the interval; there are 4 growth measurements for each

tree1.

Pooling all the data, the following simple linear regression model appears

reasonable:

Yij = α+ βxij + εij , (1)

where Yij is the j-th growth increment for tree i, xij is the corresponding

height, and α and β are regression parameters. As usual, the εij are assumed

to be independent normal random variables with mean 0 and variance σ2.
Least-squares gives the estimates α̂ = 18.95 and β̂ = −0.1985, with RSE =

σ̂ = 0.9243.

This line represents an �average� relationship between growth and height.

But the trees di�er among them in genetic makeup and local growing con-

ditions. One may be interested in how the relationship might vary among

1 It is well known that, within one tree, size observations over time tend to be au-

tocorrelated. Because size is the accumulation of growth increments that vary due to

weather and other factors. However, weather, etc., is independent or only weakly corre-

lated between one time interval and the next, so that size increments can be expected

to be approximately independent. Unless there is a large size measurement error, which

would introduce correlation because consecutive increments share one size measurement.

The increment decreasing linearly with size corresponds to the so-called Mitscherlich or

monomolecular growth model.
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trees. We can try with a common slope β, but letting each tree to have its

own di�erent intercept αi:

Yij = αi + βxij + εij .

Or in a more standard linear model notation,

Yij = α+ ∆αi + βxij + εij , (2)

where α is the average αi among all the trees, and ∆αi = αi − α. The

estimates for the ∆αi should be constrained to add to 0, the typical sum

contrast to avoid redundancy.

Now, in addition to height, there is a categorical variable identifying the

trees. In the Wilkins-Rogers computer notation this is something like growth

∼ tree + height. The estimates obtained are α̂ = 19.08, β̂ = −0.2023,
RSE = σ̂ = 0.7027, plus 14 ∆̂αi in which we are usually not interested.

An F -test indicates that the variable-intercepts model (2) is �signi�cantly

better� than (1).

Similarly, one can �t a model with a common intercept and variable slopes,

or one with both α and β varying among trees. See Lab 12. They were not

signi�cantly better than the variable intercept model.

This is a two-level hierarchical linear model2, growth measurements are

nested within trees. With balanced data, as in here, the hypothesis tests

are an instance of analysis of covariance (ANCOVA), and there is a similar

example in Chapter 10 of the textbook. The general linear model approach

and the F -tests are valid for unbalanced data too.

In general, in a multilevel model the observations belong to a number of

groups or sub-populations. These are nested in two or more levels in hier-

archical models. In a �xed e�ects formulation one has a linear or nonlinear

regression model

Y = f(x,β) , (3)

where some of the parameters in the parameter vector β are speci�c (local)

to one or more groups, while others are common to all the groups (global).

The predictors may belong to di�erent levels.

Reparametrization is commonly ised in building the model. With two levels,

one may start with an ordinary regression model like (3) with β global. Then,

2 Although this name is usually reserved for the mixed e�ects version.
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β is replaced by a function of new global and local parameters. The function

may contain predictors. In the example we simply substituted α + ∆αi for

α. The process can be repeated for more levels.

3 Mixed e�ects

Continuing with the example, in model (2) there are many parameters to

be estimated: α, β, σ, and 13 independent ∆α's. Often one is not interested

in the values of the locals, in statistical jargon they are nuisance parame-

ters.

A di�erent way of modelling this is to assume that the trees are a simple

random sample from a large population of trees, where the αi's or ∆αi's

have a normal distribution. Instead of ∆αi being an unknown parameter, it

is assumed to be a normal random variable εi with mean 0 α and an unknown

variance η2. This is called a random e�ect. The model becomes

Yij = α+ εi + βxij + εij . (4)

Now there are only 4 parameters to be estimated: α, β, σ, and η.

This is a linear mixed e�ects model. Ordinary regression models have only

one random variable ε, these models have more than one. The parameter esti-

mates in R, using lme from package nlme, were α̂ = 19.05, β̂ = −0.2014, σ̂ =
0.7029, and η̂ = 0.6134 (see Lab 12). Very similar to those from (2).

In general, one has a model like (3), but where instead of local parame-

ters one has normal random variables (random e�ects). The random e�ects

within a group or level may be correlated, they are assumed to have a mul-

tivariate normal distribution with a covariance matrix whose elements may

be partially or totally unknown.

There are methods for �estimating� values of the random e�ects for the rel-

evant groups, similar to the local parameter estimates in the �xed e�ects

approach. Of course, estimating a random variable does not make sense

from the classical statistics point of view, so a somewhat ad hoc reasoning

inspired in Bayesian ideas is used.

Although the mixed e�ects estimation algorithms are considerably more com-

plicated than those for linear or nonlinear regression, there can be compu-

tational savings over to estimating a �xed e�ects model if the number of
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local parameters is large. A large number of parameters might also reduce

precision in the (global) parameters of interest. ANOVA fans might say that

many �degrees of freedom are lost� estimating parameters about which we do

not care anyway. On the other hand, mixed e�ects models introduce strong

additional assumptions that may or may not be reasonable. In particular, a

mixed e�ects model would seem to be inappropriate if the selection of anal-

ysis units is design-based, and not a simple random sample from the target

population.
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