
NRES 798 — Lab 6

Confidence intervals, etc.

Essentially these same calculations will be constantly used in hypothesis
testing.

Confidence intervals for the mean

Generate again our sample of spider tibial spine lengths: tibia <-

rnorm(50, 0.253, 0.0039). Compute the (sample) mean, standard de-
viation, and standard error (s/

√
n).

Large samples

We know that the confidence limits (ends of the confidence interval) are
of the form Y ± k SE, for some k. Ignoring for now the variability of the
estimated SE, and assuming that Y is normal, the standardized RV Z =
(Y − µ)/SE ∼ N(0, 1) (standard normal). Therefore, k must be such that
the probability of Z being between −k and k equals the desired confidence
level, e.g., 0.95.

Sketch a standard normal PDF (or plot it with R), with −k and k shown on
the variable axis (Z in this case). Probability is the area under the PDF f .
The CDF F is the probability (area) to the left of a point. Use the standard
normal CDF to find the probability between −2 and 2.

Think about that. An interval Y ± 2 SE will include µ with the probability
that you calculated. Did your observed interval include the “true” µ (the µ
that you used to generate the sample)?
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Find the probability of µ being within Y ± SE. What about Y ± 3 SE? It
is useful to remember these probabilities for quick assessments of published
SE’s. At least the one for k = 2.

We found confidence levels for given k. To go the other way we need F−1,
the quantile function. Look at your sketch, how can you find k such that
the probability between −k and k is 0.95? Hint: use only one of k or −k,
and add the areas to the left or right.

Use the standard normal quantil function to calculate F−1(0.025 + 0.95),
F−1(1− 0.025), F−1(0.025). See in your sketch if this makes sense.

Find the confidence interval for a confidence level of 0.99.

Small samples

Now, let us take into account the variability of the estimated SE. Assuming
that the Yi are normal, Z now has a t-distribution with parameter n − 1.
Repeat the above with the t-distribution instead of the normal.

The differences are more important in smaller samples. Do the t calculations
with a sample of 20 (tibia[1:20], or head(tibia, 20)).

Calculate and/or plot the t quantile for various n.

Sample size

Roughly, 95% of the time the mean has an error of less than ±2 SE =
±2σ/

√
n. If we have a guess for σ, what sample size do we need in order to

get an error less than ±E, 95% of the time? Produce a formula for n 1.

More practical: if we have a guess for the coefficient of variation, what
sample size do we need in order to get an error less than ±E%, 95% of the
time? Do the calculations for CV = 30% and E = 5%.

1 Standard 3-step problem-solving routine: (1) Write down what you know. (2) Figure
out what you want to know. (3) Solve for it. Most of the time one should add: (0) Draw
a picture.
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Integration

Let’s see different ways of finding the area under a curve (integral). Take
the standard normal PDF between -1 and 1.

1. Divide the area into vertical strips of width ∆: Area ≈∑
f(xi)∆. For instance, delta <- 0.1, x <- seq(from=-1,

to=1-delta, by=delta), sum(dnorm(x) * delta). Do it. Try
smaller and larger values of delta.

2. A more sophisticated version of the previous method:
integrate(dnorm, lower=-1, upper=1).

3. Monte Carlo integration. Average the height at random points and
multiply by the base: x <- runif(100, -1, 1), mean(dnorm(x)) *

2. For the same number of function evaluations, is this more or less
accurate than method 1? This is more easily generalized to more
variables. E.g., in two dimensions, the area under a surface, within
some region of the plane. Similar methods are used a lot in Bayesian
inference.

4. Since we have the CDF F (y) =
∫ y
−∞ f(x) dx, we can use

∫ b
a f(x) dx =

F (b)− F (a) with a = −1 and b = 1. See your sketch. Do it.
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