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1 Scope

Is has been said that Statistics tends to be used like the drunk uses the
lamppost: more for support than for illumination.

The primary function of courses like this is usually to help with the support

function. Ecologists and other scientists are required to include Statistics in
their publications. It tends to follow a ritualized form imposed by reviewers
and editors, varying slightly with speciality, and over time with fashion.
Statistics is seen as a necessary evil that allows papers to be published and
provides some respectability, but little else. Like it or not, this is a reality
for professional scientists, and we will try to provide some of the tools of the
trade.

Used properly, Statistics can also provide illumination, aiding the under-
standing of situations that involve uncertainty. This may be more for per-
sonal consumption than for export. To some extent, we will try to shed
some light also, mainly in relation to the whys and limitations of the stan-
dard recipes.

In addition, somebody said that the reason to learn economics is to avoid
being fooled by economists. Same with statistics, except perhaps that the
worst o�enders are not usually statisticians
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This lecture deals squarely with fundamental concepts. It may seem rather
abstract at this stage, but we will keep coming back with speci�c examples
during the course. It is assumed also that you had a �rst statistics course,
from which you can remember some things.

2 Models and Statistics

The human mind is incapable of comprehending the real world in all its
complexity. In �reality�, assuming that such thing exists, everything is related
to everything else. To be able to reason, we use simpli�ed representations,
models or theories1, that include only what are thought to be the most
important relationships for the purpose in hand, and ignore the rest. These
models may be mental pictures, verbal, mathematical, or of other types. It
is crucial to realize that we are always dealing with some kind of model, and
not with the �real thing�. Failing to make the distinction is the source of most
confusion and misunderstandings, in particular when applying Probability
and Statistics.

Here we work with mathematical models. Like a mental or verbal model,
but expressed in mathematical language. Mathematical notation can be
more precise, less ambiguous. More importantly, it allows the recording
and re-use of thought processes, in the form of theorems or rules. These
can be recycled as building blocks for further deductions, without having
to start from scratch every time. The building blocks can be developed
by professional mathematicians and used by anybody. Think of musical
notation, and how it allowed the storage and re-creation of works written by
musicians centuries ago.2

Statistics deals with the use of relevant information in situations involving
uncertainty. One might distinguish:

1. Descriptive Statistics and Exploratory Data Analysis. Summarizing
data, data checking, and searching for patterns.

2. Statistical Inference. Modelling and reaching conclusions. Based on
the mathematical Theory of Probability.

1 Theories are models considered as particularly important, perhaps because of a wider

applicability.
2 For more on models see: http://www.unbc.ca/assets/nres_graduate_program/

nresi_op_06_garcia_2010.pdf
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The left-hand side of the picture3 depicts the essential aspects of a real-
world problem represented in a model. Probability theory tells us about
properties of various data that we could obtain. Assuming that the model is
"true". Once we obtain speci�c data, statistical inference can produce state-
ments about certain model properties, and guide decisions and predictions.
Important: any conclusions are about the model, not the real world. The
application of these results to the original problem requires a leap of faith:
there is an implicit assumption that if the model is not too far from the truth,
then our conclusions should not be too far from the truth either. Plausible
perhaps, but note �rst that this is rather vague (how do we measure the
distances?), and second, that there is no proof of such �continuity� property
(a small change in x implies a small change in f(x), remember Calculus?).
The justi�cation is that it usually works.

3 Figure 1.2.1 from Barnett, Vic. Comparative Statistical Inference � Third Edition,

Wiley 1999.
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3 Probability

Statistical models di�er from other mathematical models in that they include
an explicit representation of uncertainty, ignorance, or incomplete informa-
tion. It is assumed that some values are only partially known, and can take
values within some set called a sample space. The 'random' values may have
di�erent 'propensities' of occurring in di�erent parts of the sample space.
The propensity for any of the parts is described by a number between 0 and
1, its probability. In other words, probability is a function that assigns real
numbers between 0 and 1 to subsets of the sample space (named events). As
is customary in mathematics, there is some ambiguity in the use of language,
somewhat confusingly using the same word to refer to a function and to the
values that the function takes.

What is probability? In the model, it is just a mathematical entity, a func-
tion that takes sets into numbers. Probability is a special case of what
is known as a measure, like the area of parts of the plane that is not re-
stricted to be between 0 and 1. But what does it really mean? As always,
the connections between the real world and the model are mostly up to the
modeller and to the users of the research. There are di�erent views of what
randomness might mean or represent. For some, it may be a property of
physical objects or processes. In the obligatory example of a coin toss, it
would be an intrinsic property of the coin that makes it to fall heads or tails
with a certain frequency. This, or something like it, is called the frequentist

interpretation of probability. For others, or for the same people in other
situations, probability may be a purely subjective measure of belief or of our
knowledge (or ignorance) about the process, depending on experience and
changing over time and from person to person. This is subjective probability,
of which there is a number of �avours. Or randomness might be intended as
a rough representation of the e�ects of all the interactions that we left out
of the model.

In Statistics we almost always deal with sample points (elements of the
sample space) that can be represented by one or more numbers, called ran-

dom variables. And probabilities are given through distribution functions

or through probability densities that specify weights for the random variable
values. The distribution or density usually depends on one or more unknown
parameters (in general, a parameter is something that sometimes is treated
as a variable, and sometimes as a constant, depending on context).

As a shorthand, it is often convenient to collect individual numbers into a
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list or vector, and use a single symbol for it (similar to R). For instance,
for the random variables x = (x1, x2, . . . , xn), and for the parameters θ =
(θ1, θ2, . . . , θm). Sometimes, although not always, bold-face or underlining
is used to distinguish vectors from simple numbers. A probability density
function can then be written as fθ(x), or f(x;θ), or f(x,θ). A Bayesian, as
discussed below, might write it as f(x|θ). A vector of random variables can
also be called a (vector) random variable, and a vector of parameters called
simply a parameter or parameter vector.

A common convention in statistics, that we will not observe right now, is to
use capital letters for random variables, seen as functions of sample points,
and the corresponding lower-case letter for the function values.

4 Approaches to statistical inference

As shown in the previous �gure, a sample of observations is somehow ob-
tained from the population. These data is some list (or table) of numbers
that we call x. Assuming that the sampling is done �properly�, and that the
model is �true�, x is some (maybe complicated) function of the model ran-
dom variables, and is therefore also a random variable. Probability theory
can produce the density of x, which depends also on the unknown parame-
ters:

f(x,θ) . (1)

This is usually called the statistical model.

We are interested in saying something about θ. For instance, we may want to
chose a good estimate θ̂ for use in applications. More speci�cally, a function
of the data, θ̂(x). We may use the same symbol θ̂ for the function, an
estimator, and its value, an estimate.

What is a good estimator? The estimator is a function of the data, which
is a random variable, and therefore it is also a random variable. Remember
that we are talking about the model, not about the real thing. We would
like θ̂ to be close to the true θ, most of the time. We need to be more clear
on a couple of things for this to make sense.

First, what do we mean by close, and how do we value closeness? In a
practical situation the consequences of the error θ − θ̂ may be di�erent
if this is positive or negative, and they may also di�er depending on the
size of θ. Decision Theory represents the consequences by a loss function

6



L(θ̂,θ), which is 0 if the error is 0, and increases in some way as the values
become more di�erent. Now, this is speci�c to a particular problem and to a
particular decision-maker. Science is supposed to provide results for general
use, so it is not clear what loss function one should choose. So, somewhat
arbitrarily, statistical inferences are usually based on loss functions that are
mathematically convenient, and hopefully not too unreasonable. Typical
implied loss functions are proportional to (θ − θ̂)2, or to |θ − θ̂|, or are
assumed to be constant for any error di�erent from 0. In any case, we want
an estimator that minimizes the (weighted) average or expected loss

E[L(θ̂,θ)] =
∑
x

L(θ̂(x),θ)f(x,θ) (2)

(substitute an integral for the sum if x is not discrete).

Second, in general the expected loss (2) depends on the true value θ, which
is unknown. We would like it to be small for typical values of θ, averaging
according to how plausible di�erent θ might be. This is easy (in principle)
with a subjective view of probability, in the Bayesian approach. We have
then a prior probability density p(θ) that expresses our guess or feeling about
the most plausible values, based on prior knowledge, experience, or whatever.
We �simply� choose the estimator that minimizes the average expected loss,
weighted by the prior (a double expectation).

Or, to put it in a slightly di�erent way, for the Bayesian θ is a random
variable, and therefore the statistical model is a conditional distribution
f(x|θ). Through Bayes theorem, this and the prior determine the posterior

probability density

f(x|θ) , p(θ) → g(θ|x) ,

describing the probability of θ given the observations x (hence the name
Bayesian). Then the mean, median, or mode of the posterior is taken as θ̂. It
is found that the mean, median and mode minimize the expected quadratic,
absolute, and constant losses, respectively. If the posterior happens to be
symmetric, then the three values coincide, and we do not need to agonize
over which one to use.

This does not work with the frequentist view of probability, used in what is
called Classical Statistics. For the Bayesian, the �true� height of tree number
42 has a prior subjective probability. For the frequentist, that height is a
�xed unknown number, it does not make sense to assign a probability to
it. Therefore, the decision theorist can de�ne an optimal estimator, and the
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Bayesian a �sort of� optimal or approximation to it. But classical statistics
has to conform itself with estimators and other statistical procedures that,
at best, are good according to certain more or less arbitrary criteria such
as consistency, unbiasedness, e�ciency, invariance, etc. Or are best within
some restricted class, such as estimators that are linear functions of the data.
Equation (1), seen now as a function of θ for the given data x, is known
as the likelihood function, and plays a fundamental role in most statistical
procedures.

We may summarize like this:

Approach Aim Probability Information

Decision Theory Decision-making Subjective Data, prior, losses
Bayesian Inference Subjective Data, prior
Classical Inference Frequentist Data

All this is hugely controversial. Bayesian ideas were fringe stu� for many
years, but recently have become fashionable and more respectable, vocifer-
ously promoted by new converts. Classical Statistics is still the bread and
butter for most journal publications, and we will focus mostly on that, but
there is also material about Bayesian methods throughout the textbook. The
Bayesian approach is generally more intuitive and closer to how most people
think; classical arguments tend to be more convoluted. On the other hand,
whose prior should be used? It is often said that science is not supposed to
make decisions, that its role is to provide �evidence�. It should be �objective�,
so that personal priors or loss functions have no place in it. On the other
hand, the choice of model is subjective. . .

Sometimes Bayesian methods use uninformative (pspeudo-)priors, like p(θ) =
constant (not really a density). Then Bayesian and classical results may co-
incide, and there is no con�ict.

A pragmatic view could be that in a scienti�c study classical statistics pro-
vides an incomplete analysis, summarizing the evidence into estimates and
standard errors (or other similar forms). It is then up to the reader to in-
formally combine this with her priors and loss functions in order to reach
conclusions or make decisions.

There are other topics/approaches, of which here we only mention a couple:
Non-parametric Statistics uses models that are not characterized by param-
eters. It avoids some assumptions, at the cost of weaker inferences. Survey
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Sampling (designed-based), and parts of Experimental Design, use a com-
pletely di�erent inferential logic, based on repeated occurrences. And there
is Descriptive Statistics, and exploratory data analysis (EDA), that will be
seen mainly in the labs.

5 Classical statistical inference

Statistics, in its current form, is relatively recent. Amazingly, most of the
fundamentals were developed almost single-handedly by Sis Ronald A. Fisher
roughly between 1920 and 1935. Above is a photo of Sir Ronald at a seminar
organized by the US Forest Service in 1936. Many of the big names in Forest
Mensuration are there, foresters were among the �rst in adopting the new
ideas; it has been all down-hill ever since :-).

Classical statistics4 focuses largely on two main topics: parameter estima-

4 The Swedish statistician H. Crámer, in his famous 1949 book, refers to Bayesian

methods as the �classical approach�. The new statistics was developed in response to the
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tion, and tests of hypotheses. It works more or less as in this example:

Data: 10 measurements of soil pH. Model: the measurements have a normal
distribution with mean µ and standard deviation σ (parameters). Obtain
estimators (functions of the measurements) for µ and σ. Use these values
for inferences (statements, conclusions) about the parameters (estimation,
hypothesis tests). These are based on the probability distribution of the
estimators (aka sampling distribution).

More generally, as already anticipated above: Data x = (x1, . . . , xn). Pa-
rameters θ = (θ1, . . . , θm). Use a statistic5 or estimator g(x) to say some-
thing about θ (estimation: value of θ; hypothesis testing: is a certain value
plausible?). Based on the sampling distribution of g(x).

In point estimation the idea is to later use the estimate as if it were the
real value. Some measure of precision based on the sampling distribution
may also be given. There is also interval estimation, where one estimates
bounds for the parameter, in the form of a con�dence region that contains
the parameter with a given probability. Important: it is the region that is
random, the parameter is unknown but �xed! Estimators may ful�l criteria
such as consistency, unbiasedness, e�ciency, etc., and are found by methods
such as least-squares, maximum-likelihood, etc.

Hypothesis tests follow the Neyman-Person recipe: Set up a working hypoth-
esis (null hypothesis) H0, alternative to the hypothesis H in which we are
interested. Choose a statistic, and calculate its probability if H0 were true.
If the probability for the observed value is less than some magic number such
as 0.05 (signi�cance level), then �reject� H0; it is unlikely that the data sug-
gesting H would be obtained by pure chance. Otherwise, �accept� H0, the
test is inconclusive (�more research is needed�). Although the accept/reject
language may suggest decision-making, it is not supposed to.

The theory assumes that the model and the hypotheses are formulated with-
out looking at the data, they are supposed to be independent. Remember
the �Scienti�c Method�? Hypothesis → testing → modi�ed hypothesis →
testing → . . . . Clearly, the assumption of independence fails after the �rst
iteration, unless one uses a completely new data set each time. Same when

perceived de�ciencies of that approach in dealing with scienti�c problems. It is ironic that

now Bayesian methods are often presented as a response to the perceived de�ciencies of

classical statistics.
5 A statistic is any function of the data that does not depend on the parameters. An

estimator is a statistic intended to substitute for a parameter.

10



a model is formulated after an exploratory data analysis. Usually this is
cheerfully ignored.

6 Comments and conclusions

So, what's the di�erence? What most confuses people may be that classical
statistical inference does not deal with a speci�c data set, it deals with the
(random) properties of a statistical procedure. Once the data is obtained
and the calculations are done, �the dice are cast�: the interval either contains
the parameter or it does not, the estimate has a certain unknown but �xed
error, etc. Descriptive statistics and data analysis deal with a speci�c data
set. Bayesian inference describes degrees of belief after the data is observed.
The prior belief is updated according to the observations, the results are
valid for people with the same prior. The updating often uses the same
machinery from classical Statistics, and if the prior is �vague� the numerical
results are often the same; the interpretation is di�erent.

Always remember the immortal words of G.E.P. Box: All models are wrong,

but some are useful. Modelling belongs to the Art part of Science, same as
judging results in terms of practical consequences. In-between we can be
�objective�.

Some healthy disrespect for Statistics might not be a bad thing. But it must
be based on knowledge, and do not over-do it! Statistics can be a very useful
aid to common sense, although not a substitute. Misuse is common, a little
knowledge can be dangerous. It is your professional responsibility to keep
your eyes open to this.
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