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1 Linear models and ANOVA

The analysis of variance (ANOVA) is a conventional way of arranging com-
putations for testing hypotheses about linear models with categorical predic-
tors. Estimation is secondary, through calculating several so-called �means�.
ANOVA is connected with experimental design, and works well mainly for
balanced data, where the numbers of observations for each combination of
factors are the same. It does simplify hand calculation in those cases.

The modern trend, implemented in statistical packages like R and SAS, is to
treat these problems in a uni�ed way within a general linear models frame-
work1. Traditional ANOVA tables can still be produced if required. The
approach applies to balanced or unbalanced data. There is a straightfor-
ward generalization to mixtures of categorical and quantitative variables,
the area known as analysis of covariance (ANCOVA).

The material in this section is important for understanding the output from
statistical packages, and in particular from R.

1.1 Dummy variables

Let us use as an example a small data set similar to that of the ant nest
counts used before:

> ants

nests habitat

1 9 field

2 12 field

3 9 forest

4 6 forest

5 4 forest

6 10 scrub

There is a numerical response variable, nests, and a categorical predictor
(factor) habitat with 3 possible values (levels).

Remember that a linear regression model is something like

Yj = β0 + β1x1j + β2x2j + β3x3j + εj . (1)

1 Not a generalized linear model (GLM). GLMs are a special type of nonlinear model,
typically used when the response is not normal as an alternative to using transformations.
In R they are implemented by the function glm.
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For the observations j = 1, 2, . . . , n, it relates the response Yj to the quan-
titative predictors x1j , x2j , and x3j . More generally, the model may or may
not include the intercept β0. Or one can write

Yj = β0x0j + β1x1j + β2x2j + β3x3j + εj ,

where x0j is an implicit column of 1's if β0 is an intercept.

We could write a similar model to relate the number of nests to habitat in
our example. Let i be the habitat type, with i = 1 for �eld, i = 2 for forest,
and i = 3 for scrub. De�ne xij as 1 if the observation j is in habitat i, and
0 otherwise. The regression data would look like

nests field forest scrub

1 9 1 0 0

2 12 1 0 0

3 9 0 1 0

4 6 0 1 0

5 4 0 1 0

6 10 0 0 1

If Yj is the number of nests, the model equations are

nests field forest scrub

Y1 = β0 +β1 +ε1
Y2 = β0 +β1 +ε2
Y3 = β0 +β2 +ε3
Y4 = β0 +β2 +ε4
Y5 = β0 +β2 +ε5
Y6 = β0 +β3 +ε6

or
Yj = β0 + βi + εj . (2)

These 0/1 indicators are called dummy variables. Calculations for unbal-
anced designs, which are nor easily handled in ANOVA tables, used to be
done in this way as a multiple regression (1) with the x's being dummy vari-
ables (after dealing with a slight complication to be discussed in a moment).
This was also a good method for ANCOVA, including both ordinary numer-
ical variables and dummy variables. Nowadays, statistical packages use this
method internally for both balanced and unbalanced data. They make it
a little easier for the user, however, by taking care of the dummy variable
generation behind the scenes.
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1.2 Contrasts

The slight complication with the dummy variable regression above is that
there is redundancy in the parameters. Di�erent combinations of parameter
values give the same prediction. We can see that the columns for field,
forest and scrub add up to a column of 1's, the same as the implicit
column corresponding to β0. In linear algebra it is said that the four column
vectors are not linearly independent, and the system does not have a unique
solution (not to be confused with statistical independence). Another way of
seeing this is to notice that in eq. (2) one could add any constant to β0 and
subtract it from all the other βi without changing the Yj . Or, we see that
the mean for level i is β0+βi, and choosing any arbitrary value for β0 would
not make any essential di�erence in the model; what matters are the sums
β0 + βi.

Perhaps the simplest way of solving the problem in this case would be to
suppress the intercept. A regression without intercept gives coe�cients β′i
representing the mean within level i that are equal to β0 + βi in the original
model. But this would not work if there were another factor, e.g., site. The
dummy columns for the levels of site would add up to 1, equal to the sum
of the columns of habitat.

As an alternative, one could leave the intercept in and drop any one of the
columns from each factor. By default, R omits the �rst level from each factor
(levels go in alphabetical order unless told otherwise). When interpreting the
output, note than in this instance β0 in eq. (2) is the expected Yj for the
�rst level, and the other βi are di�erences between level i and level 1.

In general, it is necessary to impose some linear constraints on the model
parameters, called contrasts. We have seen the simple constraints β0 = 0,
and β1 = 0. Another contrast commonly used is shown below.

The R behaviour just described is for unordered factors. With factors that
have been speci�ed as ordered, the default contrasts represent polynomial
terms: constant, linear, quadratic, etc. We ignore these for now.

1.3 Notation

A slight variation on eq. (2) is used to describe models with categorical pre-
dictors (�ANOVA models�). Instead of Yj , one uses Yij to indicate replicate
j within factor level i, re�ecting the alternative data tabulation
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Replicate
Habitat 1 2 3

field 9 12
forest 9 6 4
scrub 10

Then the model is
Yij = µ+ αi + εij . (3)

The parameter µ is an over-all mean, and αi is the e�ect of the level i of
the factor. It is assumed that the αi add up to 0, that is, the e�ects are
above and below the over-all mean µ. This provides a contrast that makes
the parameters well-de�ned. For the observed values one can write

yij = µ̂+ α̂i + eij .

With two factors one might have

nests habitat site

1 9 field east

2 12 field west

3 9 forest east

4 6 forest west

5 4 forest east

6 10 scrub west

Site
Habitat east west

field 9 12
forest 9, 4 6
scrub 10

and
Yijk = µ+ αi + βj + εijk . (4)

Additional terms may include interactions and special components for nested
designs. An interaction (αβ)ij corresponds to a product of variables in re-
gression, more on that later.

Statistical packages like R specify the model with formulae based on a nota-
tion proposed by Wilkinson and Rogers in 1973. Model (3) becomes

nests ∼ habitat

and (4) is

nests ∼ habitat + site

As with the intercept in regression, the mean µ is implicit. Computations in
R are done with the general linear model function lm or with the analysis of
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variance function aov, e.g., lm(nests ∼ habitat, ants). These functions
are essentially equivalent, di�ering in how the outputs are displayed by de-
fault. Function aov has some additional argument options for nested design
models.

The type of contrasts to be used can be set as a global option, or in the
optional argument contrasts of lm or aov. The default "contr.treatment"
works as described in Section 1.2. For our one-factor example, in the lm

output the intercept is µ̂+ α̂1, habitatforest is α̂2− α̂1, and habitatscrub

is α̂3 − α̂1.

Sometimes it may be convenient to produce output in a format closer to
eq. (3) or (4). With contrasts set to "contr.sum", lm gives µ̂ as the intercept,
α̂1 as habitat1, and α̂2 as habitat2. Because the α's add up to 0, α̂3 =
−(α̂1 + α̂2).

2 Assumptions

Like in any analysis, or perhaps in any scienti�c investigation, conclusions
are only valid if the assumed model is true. Or more precisely, they would be
valid if the model were true, since true models do not exist. Pragmatically,
one hopes that if the model is �good enough�, then any conclusions derived
from it might be good enough.

Models like those in equations (3) and (4) include a number of assump-
tions:

1. The model is linear. More speci�cally, the e�ects α, β, etc., possibly
including additive interaction or other complex terms, and the residual
error ε, they all contribute to the response as a sum. Like in regression,
sometimes a transformation of Y can make the assumption more plau-
sible. For instance, multiplicative e�ects become additive for log Y .
The linearity assumption is somewhat less restrictive than in regres-
sion, because nonlinear transformations of zeroes or ones do not make
any essential di�erence.

2. The random variable ε is normal, with mean 0 and a variance that does
not depend on the factors. Again, transformations can help, although
achieving at the same time additivity, normality and homoscedastcity
with the one transformation might be too much to ask.
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3. Simple random sampling. That is, the observations are statistically
independent, and have the same distribution as the population. It is
the role of careful sampling or experimental design and randomization
to strive for this.

3 Hypothesis tests and ANOVA

3.1 Historical

ANOVA computes F -ratios for testing hypotheses about factors (predictors).
The null hypothesis is that certain factor in the model has no e�ect. That
is, that all the coe�cients for the factor (one for each level) are zero.

Calculations are traditionally arranged in tables, where the sums of squares
for the numerator and denominator of the F -ratio arise from combining
sums of squares for various groups of factor levels. Some sums of squares
are obtained from di�erences, facilitating hand computations. We saw an
example in the ANOVA for linear regression.

In general, with more than one factor ANOVA really works well only for
balanced data from designed experiments, where the numbers of replicates
in all groups are the same. With unbalanced data things do not add up,
literally. Some of the product terms that appear when squaring partitioned
di�erences do not vanish, so that component sums of squares do not add
to the total. With unbalanced data, the interpretation of F -ratio tests also
becomes more di�cult.

It can be argued that the motivation behind the ANOVA table is largely ob-
solete, only the F -ratios with their degrees of freedom and/or the p-values are
useful. Some reviewers and journals, however, still insist on the conventional
tables, and statistical software can print them out. One possible justi�cation
for the ANOVA table is that the Sources column describes the model that
was assumed in the analysis. However, more explicit model descriptions in
the form of equations (3) and (4) are gaining ground.

3.2 Hypotheses and F tests

The usual ANOVA null hypothesis is that some factor has no e�ect, e.g.,
that all the αi in (3) or (4) are 0. The alternative is a model containing
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those e�ects:

H0 : Yijk = µ+ βj + εijk , Ha : Yijk = µ+ αi + βj + εijk .

An appropriate F -ratio statistic can be built with the RSS obtained from
�tting theH0 andHa models, say RSS0 and RSSa, and the respective degrees
of freedom:

F =
(RSS0 − RSSa)/(df0 − dfa)

RSSa/dfa
. (5)

It measures how much worse the �t gets when dropping α. If H0 is true, then
this F -ratio has an F distribution with df0−dfa and dfa degrees of freedom.
The more important the factor α is, the worse the �t of H0 becomes, and the
larger the value of F . The null hypothesis is therefore rejected if the observed
F is larger that the quantile corresponding to the chosen signi�cance level.
Or if the p-value for F is smaller than the signi�cance level.

In ANOVA the denominator of the F -ratio above is called the residual mean
square, or mean square within groups. It is the variance of the residuals.
The numerator is called the mean square due to the factor α.

Yes, very often that is the wrong question. A real problem with many
published statistical analyses. One may know that there must be some e�ect,
and the relevant question is how large the e�ect may be. An estimation
problem, answered by the parameter estimates in the linear model. Or the
fact that a factor a�ects the response may be uninteresting, but we might like
to know about di�erences among levels; a problem of multiple comparisons,
to be discussed later.

In R, F could be obtained as shown here, from the results of lm applied
to the H0 and Ha models. Alternatively, given the two �tted models as
arguments, the anova function produces a small model comparison ANOVA
table that contains the numbers required:

> H0 <- lm(nests ~ site, ants2)

> Ha <- lm(nests ~ habitat + site, ants2)

> anova(H0, Ha)

Analysis of Variance Table

Model 1: nests ~ site

Model 2: nests ~ habitat + site

Res.Df RSS Df Sum of Sq F Pr(>F)

1 4 35.333
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2 2 16.000 2 19.333 1.2083 0.4528

The hypothesis test is only valid if one model is a special case of (it is
contained in) the other one (they are nested), and if both were �tted to the
same data. Apart from that, this is very general, and applies also to linear
and nonlinear regression models, and to analysis of covariance. Although
for testing signi�cance of individual variables in regression it might be easier
to use the t values from the output; the tests are equivalent, the F -ratio is
the square of the t statistic. Granted, it is not the most e�cient approach
computationally, it wastes many milliseconds of computer time!

With balanced data, the simplest and most direct way is to obtain an
ANOVA table for Ha with anova(Ha), or as

> summary(aov(nests ~ habitat + site, ants2))

Df Sum Sq Mean Sq F value Pr(>F)

habitat 2 24.167 12.083 1.510 0.398

site 1 1.167 1.167 0.146 0.739

Residuals 2 16.000 8.000

It should give the F -ratios and p-values for testing both factors. However,
in this example the data is unbalanced and the numbers are wrong. Or at
least are not what one would expect, and change if one changes the order of
habitat and site.

4 ANOVA models

The �bestiary� of ANOVA models can be understood in terms of the general
model just discussed. The purpose of the ANOVA tables is to facilitate the
manual computation of the F -ratio in equation (5). Examples of many of
them are found in the textbook.

It is a good idea, and it is becoming standard, to show explicitly the structure
of the model with the notation of equations (3) and (4). In R the F -ratio and
p-value can always be obtained from anova applied to the null and alternative
models �tted with lm or with aov. If required, for balanced data one can
obtain the traditional table with anova(lm(.)) or summary(aov(.)) for
the alternative model, and pretend that it was done the old way.

Very frequently the hypothesis test is uninteresting. The fact that certain
treatments must have some e�ect may be obvious, the real question is how
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large the e�ects might be. This is an estimation problem, that ANOVA han-
dles largely as an afterthought. The expected responses to combinations of
factor levels are estimated by so-called means, the averages of the observa-
tions within each group.

An alternative to calculating group averages, that produces the same result,
is to substitute the parameter estimates from lm into the model equation.
output, by summing the intercept and the appropriate parameter estimates.
For instance, for a model of the form Yijk = αi + βj + εijk such as nests ∼
habitat + site, using the sum contrast option:

Site

Habitat East West

Field (Intercept) + habitat1 + site1 (Intercept) + habitat1 - site1

Forest (Intercept) + habitat2 + site1 (Intercept) + habitat2 - site1

Scrub (Intercept) - habitat1 - habitat2 + site1 (Intercept) - habitat1 - habitat2 - site1

The last level that is not shown in the lm output have been substituted in
terms of the other levels, using

∑
αi =

∑
βj = 0.

With the default treatment contrast, which omits the �rst level from each
factor, it is a little simpler:

Site

Habitat East West

Field (Intercept) (Intercept) + sitewest

Forest (Intercept) + habitatforest (Intercept) + habitatforest + sitewest

Scrub (Intercept) + habitatscrub (Intercept) + habitatscrub + sitewest

In addition, one may be interested in testing di�erences between means for a
number of group pairs. These multiple comparisons problems are discussed
later.

4.1 One-way layout

Or one-factor ANOVA. This is the model

Yij = µ+ αi + εij

that we have already seen.
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4.2 Two-way layout, no interaction

Or two-factor. The no replicates variant has one observation for each com-
bination of levels from factors α and β:

Yij = µ+ αi + βj + εij .

The replicated variant has the same number of observations (replicates) for
each combination of levels:

Yijk = µ+ αi + βj + εijk

(eg. (4), balanced).

Depending on the objectives and design, factors or factor levels may be called
treatments if one is interested in their e�ects (e.g., habitat), or blocks, if not
(e.g., site).

The purpose of blocks is to increase homogeneity within groups and thus
reduce the RSS and increase the power of the test by making F larger (see
eq. (5)). Same as in the paired t-test, where the comparisons are done
between pairs of similar individuals, or on a same individual.

Blocks are implemented in randomized block designs, that correspond to a
no-replicates model (the blocks themselves can be considered as replicates).
Note the di�erent elements: model�design�analysis; these are closely related
but it is useful to keep in mind the distinctions. A typical design in a �eld
experiment would have the treatment levels i randomized within compact
blocks j:

Block 1

Block 2

This model applies also to some repeated-measures and other experimental
designs.
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4.3 Two-way with interaction

Or two-way factorial. In the models of Section 4.2 the factor e�ects are
additive, the response di�erences between two levels of factor 1 are the same
regardless of the level of factor 2. Same for the factor 2 e�ects. An interaction

term causes the responses to be di�erent.

The analogous in linear regression is to have E[Y ] = β0 + β1x1 + β2x2. The
slope of Y vs. x1 is the same for any value of x2, only the intercept changes.
A product term causes the slope to vary: E[Y ] = β0+β1x1+β2x2+β3x1x2.
With categorical variables the interaction is implemented with products of
dummy variables, but as before the model can be speci�ed with simpli�ed
formulae without worrying about the details.

The two-factor model with interaction is

Yijk = µ+ αi + βj + (αβ)ij + εijk ,

where (αβ)ij denotes the interaction term. Replication is needed, other-
wise there is not enough information for estimating the interaction. On the
computer, the Wilkinson-Rogers notation used a dot to suggest the product
in the interaction, but because dot is a valid name character in R it was
changed to a colon:

Y ∼ alpha + beta + alpha:beta

This can also be written as

Y ∼ alpha * beta

The interaction can be visualized with interaction.plot(alpha, beta,

Y) and interaction.plot(beta, alpha, Y).

Besides balance, for the ANOVA table to be correct the null hypothesis must
respect the principle of marginality. This means that the main e�ects α and
β cannot be absent if the interaction term is included; a null hypothesis like
Yijk = µ+ αi + (αβ)ij + εijk is not admissible.

4.4 Factorial designs

A full factorial is the model of Section 4.3 extended to any number of factors.
E.g., for 3 factors:

Yijkl = µ+ αi + βj + γk + (αβ)ij + (αγ)ik + (βγ)jk + (αβγ)ijk + εijkl ,
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and

Y ∼ alpha + beta + gamma + alpha:beta + alpha:gamma +

beta:gamma + alpha:beta:gamma .

Or
Y ∼ alpha * beta * gamma .

Various incomplete-blocks and other designs omit some of the interactions.
The principle of marginality must be observed when using ANOVA ta-
bles.

4.5 Nested designs

In nested designs one treatment is applied �inside� another. There are two or
more hierarchical levels of experimental units, sometimes called main plots

and subplots. For instance, in an agricultural experiment irrigation, factor
α, may be di�cult to control on small areas, so it is applied to large main
plots. Then, each main plot is split into subplots that receive di�erent levels
on another treatment, β, such as plowing or fertilizing. This is called a
split-plot design:

This is a specialized topic in experimental design that can get rather complex,
with nesting at several hierarchical levels. A few more details can be found
in the textbook. Within the framework that we have been discussing, a very
simple model might look like

Yijk = µ+ αi + βj(i) + εijk ,

where βj(i) indicates that treatment β is applied to subplots of the main
plot receiving the treatment α. The model translates into the following R

formula:
Y ∼ alpha + alpha / beta .
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An alternative to alpha / beta is beta %in% alpha.

Another approach to nested designs represents e�ects of some uninteresting
factors as random variables instead of parameters. Random e�ects instead
of �xed e�ects. There are then other error terms in addition to the regular
ε. In the R model formula, random expressions are speci�ed inside a term
Error(.), like Y ∼ alpha + Error(beta) as the simplest possible example.
This is available in aov, but not in lm.

This second approach goes beyond the standard linear model framework,
into what are called random e�ect methods and variance component models.
More general linear mixed e�ect models are handled in package lme, and
nonlinear mixed e�ects in package nlme.

4.6 ANCOVA

It is straightforward to combine categorical and numeric predictors in a linear
model, using lm or aov. That is called analysis of covariance (ANCOVA),
and the numeric predictors are covariates.

Hipotheses can always be tested by the F -ratio based on a reduced null
model and the full alternative. In well behaved cases the ANOVA table for
the full model may provide the information needed.

5 Multiple comparisons

OK, we rejected the null hypothesis, now what? It seems unlikely that the
factor has no e�ect. But what about some of the factor levels, or di�erences
between levels?

One could carry out hypothesis tests to try answering many of these ques-
tions. Speci�cally, we may want to test signi�cance for the response di�er-
ences among all the pairs of levels of a factor. Di�erences among the pairs
of means, that is, means within groups that have the same factor levels. In
Section 10 it was seen how to get these from the lm output. A t-test for the
di�erence of means can be used.

The problem is that �nding a signi�cant di�erence in a battery of tests is
much more likely than what the nominal signi�cance level suggests. There is
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a pretty good chance of rejecting one hypothesis at the 0.05 level in a batch
of 20 tests.

The signi�cance level α is the probability of a hypothesis test rejecting the
true hypothesis (Type I error). The probability of any one of k tests rejecting
its hypothesis at the α level, if the tests were statistically independent, would
would be kα. This is a Bonferroni upper bound, the probability for non-
independent tests is less (draw a Venn diagram). The Bonferroni method
adjusts the signi�cance level of each test to α/k, so that the Type I error
for the lot is at most α. This method is commonly used, although obviously
it can be rather conservative. The way it is usually applied is to compute
an α/k-level con�dence interval for the mean di�erences, and if the interval
includes 0 the means are deemed not to be signi�cantly di�erent.

Another popular multiple comparisons tests that works in a similar way but
is less conservative, is Tukey's honestly signi�cant di�erence (HSD). This is
available in R as TuckeyHSD.
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