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1 What

A real-world system may be modelled as a (random) experiment or trial. The
set of possible outcomes or sample points is the sample space. The sample
space may be discrete, if the number of sample points is countable (�nite or
countably in�nite), or continuous if not1. A set of sample points is called an
event. A probability is a function that maps events into real numbers, and
that satis�es three axioms. If Ω is the sample space, P is the probability,
and A and B are events, the axioms are

Axiom 0: P (A) ≥ 0.

1 Hybrids of the two are possible, but not all that common.
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Axiom 1: P (Ω) = 1 2.

Axiom 2: P (A ∪ B) = P (A) + P (B) if A and B are disjoint (i.e., if
A ∩B = ∅, where ∅ is the empty set).

A

B

Ω

Reminder (visualize in the Venn diagram): ∪ is union, the points that belong
to any of the two sets, ∩ is intersection, the points that belong to both sets.
Another operation is the set di�erence A \B, the points of A that are not in
B. The complement Ā = Ω\A denotes the points outside A; other notations
are AC or A′. The symbols ⊂ or ⊆ mean �is a subset of�, and ∈ means �is
an element of�.

Other properties can be derived from the axioms:

P (A) ≤ 1 , P (Ā) = 1− P (A) , P (∅) = 0 , etc.

You should be able to �gure out all this from looking at Venn diagrams, no
need to memorize. Sometimes a di�erent set of axioms is chosen, and some
of those above are taken as derived properties3.

2 The wording in the textbook, �The sum of all the probabilities of outcomes within
a single sample space = 1.0�, is true for discrete sample spaces. In a continuous sample
space those probabilities are 0, and the sum of in�nite zeroes is unde�ned. There is a
similar problem with the formulation of Axiom 2.

3 More advanced treatments talk of a probability space (Ω,F ,P) consisting of three
things (a triple): Ω, the set of events F (set of subsets of Ω), and P . The probability is a
function taking events A ∈ F into real numbers p ∈ R, that satis�es certain axioms. In
the usual notation,

P : F → R

A 7→ p

P is a special case of a measure. Other examples of measures are areas, volumes, and
weights, which do not necessarily satisfy Axiom 1.
For continuous Ω there are some technicalities about the sets allowed in F , because for

some weird sets, like fractals or Cantor sets, it is not possible to de�ne a probability (they
are not mesurable). Anyway, F must contain ∅ and Ω, and must include any sets that can
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In applications, probability gives weights to events according to frequency,
belief, or any other interpretation. A good mental model for it is the weight
of portions of an object where density varies smoothly throughout. The unit
of weight is scaled so that the total weight is 1. More speci�cally, this would
correspond to a 3-dimensional continuous sample space. In 2-D one might
think of a sheet made of that material, or in 1-D, a wire. In a discrete sample
space, the �stu�� is clumped into discrete chunks.

Terminology: As pointed out in the textbook, in some circumstances a ran-
dom experiment or trial may be called a replicate. It also uses the word
�event� for a trial a couple of times, perhaps by mistake. For the elements
of Ω, sample point is perhaps the less ambiguous term, although not the
shortest. And in general it is not the same as a sample, see later. Outcome

is commonly used, although some authors use outcome for event. The text-
book uses event, or later simple event, for a sample point, and complex event

for what is normally known as event (the term used here)4; be careful! Some
refer to sample points as atomic events. Of course, a sample point is also a
special case of event (in the usual sense), as are also ∅ and Ω.

2 Examples

1. Pitcher plants. We model the visit of an insect to a pitcher plant as a
random experiment or trial with two possible outcomes: Ω = {capture,
escape}. There are 4 possible events: ∅, capture, escape, and Ω (sets
of size 0, 1, 1, and 2, respectively; one could also have written {cap-
ture} and {escape}). The 4th event is interpreted as �either capture or
escape�.

Assume that P ({capture}), or simply P (capture), is some unknown

be obtained from others through unions, intersections and complements, what is known
as a σ-algebra. In the special case of continuous random variables, where Ω is a set of real
numbers or numeric vectors, the allowable events are intervals (possibly multi-dimensional
intervals), and any other sets obtainable from intervals through unions, intersections, and
complements. These are called Borel sets, and should include everything likely to be useful
in practice. In the main text above, we are just trying to be reasonably precise without
being overly pedantic.

4 Is this wrong? Not really. Does it matter? Not if this is the only thing you will ever
read on the topic. In math, we are free to de�ne anything in any way we want, provided we
de�ne it clearly. I could say �Let π = 42�, and proceed through three pages of derivations
representing 42 by π. Of course, likely that would confuse the hell out of everybody. But
strictly speaking, it would not be wrong, just bad manners.
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number θ. Then P (escape) = 1 − θ, and obviously P (∅) = 0 and
P (Ω) = 1.

2. Two pitcher plant visits. Using pairs to show the outcomes of the �rst
and second visits, the sample space for this composite experiment has
4 outcomes:

Ω =

{
(capture, capture) (capture, escape)
(escape, capture) (escape, escape)

}
.

There are 16 possible events (list them!). For instance, the event �one
capture� = {(capture, escape), (escape, capture)}.

If the outcome from the second visit is not a�ected by what happens in
the �rst one, the probability of a composite outcome equals the product
of the probabilities for the individual visits (independence, more on this
later). The probabilities for the outcomes are then

θ2 θ(1− θ)
(1− θ)θ (1− θ)2

The probabilities for other events can be worked out from Axiom 2.

3. Milkweeds and caterpillars. In a certain location we can �nd a pop-
ulation of milkweed that is resistant to caterpillars (R), one that is
not resistant (∼R), or there may be no milkweed (N). In the same
location one can �nd caterpillars (C), or no caterpillars (∼C). For the
composite of combined occurrences we have the sample space

Ω =


(R,C) (R,∼C)

(∼R,C) (∼R,∼C)
(N,C) (N,∼C)

 .

An example of an event other than these �simple events� is the presence
of resistant milkweed, {(R,C), (R,∼C)}.

Assume that the probabilities of milkweed occurrence are P (R) = 0.2,
P (∼R) = 0.8, P (N) = 0. For caterpillars, P (C) = 0.7, P (∼C) = 0.3.
Initially, the milkweed and caterpillars disperse independently, so that
the probability of a combination is the product of the probabilities of
the components, giving the composite outcome probabilities

0.14 0.06
0.56 0.24

0 0
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The probability of occurrence of resistant milkweed is found to be
0.14 + 0.06 = 0.20, agreeing with the original P (R).

Suppose that after that, the caterpillars eat all the non-resistant milk-
weed. The probabilities change to

0.14 0.06
0 0.24

0.56 0

The probability of �nding any milkweed is now 0.14+0.06+0+0.24 =
1− (0.56 + 0) = 0.44.

4. Throwing a dart. We throw a dart at this dartboard:

10
5

1

SW SE

NENW

Only throws where the dart sticks to the dartboard are valid5. Assum-
ing that any point can be hit, the sample space Ω (in the model!) is
now continuous, consisting of all the points within the outer circle6.
Example events are hitting inside the central circle (10), or hitting the
5-ring within the 2nd quadrant, which might be coded as (5, NW).
Note that this last event can be seen as the intersection of the event
�5-ring� and the event �NW quadrant�.

On discrete sample spaces, it is true that events with probability 0 will
never happen, and events with probability 1 are sure to happen. This
is not necessarily true if the sample space is continuous. In the darts
example, any individual point has probability zero. But when the dart
is thrown, it hits some point, which had probability zero. Similarly,

5 If you must have biological examples, translate to a seed falling on a �eld.
6 The whole wall would also be an acceptable sample space, with the area outside the

dartboard having probability 0 (hitting there does not count).
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the rest of the board excluding that point had probability 1, but it was
not hit. Probabilists are careful in speaking of sets of probability zero,
which are not necessarily impossible, and of things happening almost

surely, meaning with probability 1 7.

3 Why

The way probability is used in Statistics goes more or less like this: A (prob-
abilistic, aka stochastic) model of the real system is made up, like in the ex-
amples above. If not already numerical, the outcomes are coded as numbers
called random variables (RVs). Said slightly di�erently, an RV is a function
mapping outcomes into numbers (or into numeric vectors in multivariate
statistics). For instance, dart throws could be described by their Cartesian
(x, y) or polar (r, α) coordinates. Note that functions of RVs are also RVs.
The word distribution is normally used for the probability model of an RV.
Then, some kind of sample is considered, where hypothetical observations
of the model RVs are made, usually from a sequence of repetitions of the
experiment or trial. The sample is a set (or vector, or table) of RVs; each of
these may correspond to the RV in the original model, or may be another RV
derived from it. Probability theory is used to derive the distribution of the
sample (a probability model), starting from the original system model. The
next step is to choose a statistic, that is, some function of the sample, which
is therefore also an RV. Probability theory is then used again to obtain the
distribution of this statistic, called its sampling distribution. This sampling
distribution is then used for making inferences about the unknowns in the
model.

We demonstrate with the pitcher plants example. De�ne an RV that is
1 for capture, and 0 for escape. Assume that in one day we make m =
1000 visits, and we observe the outcomes. A result would look like this:
(0, 0, 0, 1, 0, 0, 1, 0, . . . , 0), a vector of length m. It is assumed that the visits
are independent, the result from a visit is not a�ected by the results in other
visits.

7 Weird things can happen when dealing with in�nities and in�nitesimals. Such mod-
els can be convenient (remember, they are only models), but one has to tread care-
fully. Mathematicians of the Constructivism School insist that everything should be
done in �nite terms, possibly passing to a limit at the end when all else has been done
(http://en.wikipedia.org/wiki/Finitism). That may be too much work, however, and pro-
fessional mathematicians enjoy showing o� their skills in avoiding potential pitfalls.
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Instead of recording all this, we decide to record only the number of cap-
tures X, that is, the number of ones, or the sum of the vector elements8.
We need the distribution of X, that is, its probability model consisting
of a sample space and a probability function. In m visits we can observe
anywhere between 0 and m captures, so that the sample space of X is
Ω = {0, 1, 2, . . . ,m}. It is shown in the next chapter that in this instance the
probability of an outcome x is given by a binomial probability density

P (X = x) =

(
m

x

)
θx(1− θ)1−x .

This is commonly written X ∼ Binomial(m, θ), or something like that, read
as �X is distributed as a binomial with parameters m and θ�.

An observation is made every week over one year, so that one collects 52
values �from� that binomial distribution. The mean X̄ of these n = 52
numbers9 (a statistic) is used as an estimate of θ. Note that nX̄ is simply
the number of captures in mn = 52000 visits, so that nX ∼ Binomial(mn, θ)
(sampling distribution). This can be used to justify the use of the sample
mean to estimate θ, and to compute standard errors, con�dence limits, or to
test hypotheses.

4 More properties

4.1 Unions

Axiom 2 says that if A ∩ B = ∅, then P (A ∪ B) = P (A) + P (B). What if
the intersection is not empty? Look at the Venn diagram above (you may
think of that as hitting parts of the dartboard in Example 4). It is seen that
on adding the points in A and the points in B, the points in the intersection
are counted twice. Therefore, correcting for the double counting,

P (A ∪B) = P (A) + P (B)− P (A ∩B) , (1)

generalizing Axiom 2.

8 It can be shown that the order of the 0's and 1's does not provide any information
on the unknown θ, the count is a su�cient statistic.

9 The bar notation is commonly used for sample means, do not confuse with set com-
plement.
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4.2 Conditional probability, independence

P (A|B) denotes the probability of an outcome being in A, knowing that it
is in B. Think of this in the Venn diagram and/or dartboard: The sample
space is �rst restricted to B, which contains all the relevant outcomes. P
must be divided by P (B), so that the new probability adds to 1 over the new
sample space. The relevant part of A is A ∩ B. Therefore, the conditional

probability is de�ned as

P (A|B) =
A ∩B
P (B)

. (2)

Solving for A ∩B, one can write the joint probability as

P (A ∩B) = P (A|B)P (B) . (3)

An event A is said to be independent of B if P (A|B) = P (A). That is,
knowledge of B does not change our knowledge of A. If A is independent of
B, then equation (3) becomes

P (A ∩B) = P (A)P (B) ,

which is often taken as an alternative de�nition of independence. From this,
it is clear that if A is independent of B, then B is independent af A, so that
we can simply say that A and B are independent10.

Independence is most common in models of composite experiments or of
sampling. In example 3, the events �resistant milkweed� = {(R,C), (R,∼C)}
and �no caterpillars� = {(R,∼C), (∼R,∼C), (N,∼C)} are independent. In
the previous Section, the numbers of captures observed in di�erent days are
(assumed to be) independent. The results of throwing two darts (or the same
dart twice) might be assumed to be independent. Occasionally, independence
may be built into a non-composite model; for example, in the darts model
we might assume that variability along the x-axis is unrelated to variability
along the y-axis.

4.3 Bayes Theorem

From (3),
P (A ∩B) = P (A|B)P (B) = P (B|A)P (A) .

10 This is not exactly the same as causal, physical, or other kinds of independence. What
happens today may depend on what happened yesterday, but usually not the other way
around. Statistical independence is about joint (although not necessarily simultaneous)
occurrence P (A ∩B).
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Solving in the last two terms for P (A|B), we obtain (one form of) Bayes

Theorem:

P (A|B) =
P (B|A)

P (B)
. (4)

The marginal probability P (B) is sometimes included in the theorem in other
forms. For instance, in the textbook

P (B) = P (B|A) + P (B|Ā)

(check on the Venn diagram).

The theorem works for any de�nition of probability, but it is most often
used with subjective probabilities in Bayesian inference (hence the term
Bayesian). There, A corresponds to parameters, and B to data. A proba-
bility for parameters makes no sense in the frequentist interpretation.
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