## FSTY 405 - Silviculture II

## Final exam, 6th December 2001

## Name:

## Student number:

- Ensure that your name and student number are correctly entered above.
- Answer in the spaces provided after each question, writing down clearly the intermediate steps. Use the reverse as scratch pad.
- Write clearly, and use ink, not pencil.
- Pages: 5. Questions: 10 (counting lettered parts), worth 3 marks each unless stated otherwise. Total 33 marks.
- Time: 2.5 hours.

1. We have the following model:

$$
\begin{align*}
V & =0.3 B H-4.2  \tag{1}\\
\Delta B & =3-0.02 B-0.04 H  \tag{2}\\
\Delta H & =1.7-0.03 H \tag{3}
\end{align*}
$$

where $V$ is volume ( $\mathrm{m}^{3} / \mathrm{ha}$ ), $B$ is basal area $\left(\mathrm{m}^{2} / \mathrm{ha}\right), H$ is top height $(\mathrm{m})$, and $t$ is time (years). Increments are for 4 -year periods.
(a) Indicate:

State variable(s):
Transition function(s):
Output function(s):
(b) Draw a System Dynamics (rate-level, Vensim) diagram for this model. Label the elements appropriately.
(c) A 40 year-old stand has $V=75, B=22, H=12$. At age $44,50 \%$ of the basal area is removed in a thinning. Estimate the basal area at age 48.
2. For ages up to 120 years, the VDYP volume equation is

$$
\begin{equation*}
V=b_{0}+b_{1} H+b_{2} H A+b_{3} H^{2} C+b_{4} A C, \tag{4}
\end{equation*}
$$

where $V$ is total volume $\left(\mathrm{m}^{3} / \mathrm{ha}\right), H$ is top height $(\mathrm{m}), A$ is breastheight age (years), and $C$ is canopy closure (\%). The regression parameters for lodgepole pine are:

|  |  |  |  | 3 | 4 |
| :--- | ---: | ---: | ---: | ---: | ---: |
| i: | 0 | 1 | 2 | 3 | $b_{i}$ |
| $b_{i}:$ | 79.0 | -10.5 | 0.0628 | 0.0235 | -0.0830 |

Goudie's site index model, for site index 19 simplifies to:

$$
H=34.93-4613 /\left(A^{1.285}+137.2\right)
$$

(the coefficients, except for 1.285 , vary with site).
(a) For site index 19 and $80 \%$ canopy closure, what is the MAI at 100 years breast-height?
(b) In relation to this, explain Eichhorn's rule. What is it, does it apply here?
(c) This model is a normal, an empirical, or a variable-density yield table? Explain why (including why it would be a yield table).
3. Explain what is, where is it used:
(a) Competition index
(b) Guide curve
(c) Spatial correlation
4. (6 marks) Classify the following models:

|  | Prognosis | TADAM | TASS |
| :--- | :--- | :--- | :--- |
| Deterministic |  |  |  |
| Continuous |  |  |  |
| Distance-dependent |  |  |  |
| Aspatial (non-spatial) |  |  |  |
| Stand-level |  |  |  |
| Discrete |  |  |  |
| Stochastic |  |  |  |
| Individual-tree |  |  |  |

Place in each box a $\mathbf{Y}$ for yes, or an $\mathbf{N}$ for no.
Note: for terms that are opposites, you need to have both right to score.

