Site quality

Site: place + environmental conditions Quality: potential productivity (for a species or forest type)

Main growth factors:

site density

Methods

A. Direct

- 1. Historical
- 2. Volume
- 3. Height
- B. Indirect
 - 1. Inter-species relationships
 - 2. Indicator species
 - Environmental variables (climate, soil, topography)

Site Index (height-age)

- For even-aged stands
- Stratification
- Age:

total, planting, breast-height

Height: dominant / co-dominant, n tallest, n fatest

(dominant, predominant, top height, site height)

Read Chapter 2 of Clutter *et al* "Timber Management: A Quantitative Approach"

A1 is generally impractical in forestry.

- A2 can fail with variable densities.
- A3 usually OK with even-aged stands.
- B is only choice with bare land or uneven-aged (but see Vanclay for research on uneven-aged direct methods).

Should be used **within** bio-climatic regions. BC Forest Productivity Council reserves the term "top height" for heights according to a particular standard method, recommends "site height" otherwise.

Interior lodgepole pine curves (Goudie 1984). In: Thrower, J.S. *et al.* 1994 "*Site index curves and tables for British Columbia interior species*" (2nd edition). BC MOF Res.Br., Land Manage.Handb. Field Guide Insert 6.

Labelling of curves is arbitrary (quality classes here).

Conventional site index labeling: height at index or base age. Index age should not matter.

Growth intercept methods

- E.g., 5-year intercept: 5 whorls above breast height
- Use directly ("growth intercept index"). Or relate to SI
- Sometimes easier than SI. Good for young stands
- Two points. "Abnormal" establishment conditions.

Indicator plants: Finland (Cajander 1926)

- Regressions on soil, climate, topography
- SIBEC Site Index from BEC (BC Biogeoclimatic

Ecosystem Classification)

Data for site index

- Temporary plots
- PSPs
- Stem analysis

For details see publications in www.for.gov.bc.ca/hre/sitetool/publicat.htm

SIBEC combines vegetation, soil properties, etc. See www.for.gov.bc.ca/hre/sibec

Stem analysis. From *Münch and Thompson*, "The Structure and Life of Forest Trees", Chapman & Hall, 1929.

	Numb	er of rings	Trunk has grown up in years	Height of stump feet	Height of trunk with stump feet	Height of the tree feet	Average annual increment of trunk feet	Average annual increment of crown feet
Tree No.	at butt	at upper end						
	199	- 74	65	0.50	37.00	58.00	0.56	0.28
	196	67	50	0.58	36.08	43.58	0.60	0.11
3	136	75	61	0.50	31.50	40.00	0.51	0.11
4	139	80	59	0.17	32.17	50.17	0.54	0.23
5	136	105	30	0.75	28.75	51.75	0.93	0.22
6	138	107	31	0.50	22.50	48.50	0.71	0.24
7	138	98	40	0.75	21.75	47.75	0.52	0.27
8	138	109	29	1.00	18.00	46.00	0.59	0.26
9	139	100	39	0.66	27.66	53.66	0.69	0.26
10	135	105	29	0.75	\$1.75	43.75	1.07	0.11
11	130	100	50	0.66	15.66	38.66	0.50	0.23
12	129	109	20	1.00	20.00	52.00	0.95	0.29
13	143	100	43	0.83	28.83	60.83	0.65	0.32
14	130	91	- 59	0.83	22.83	48.83	0.56	0.29
15	135	88	47	0.50	42.50	62.50	0.89	0.23
16	127	92	35	0.66	29.66	50.66	0.83	0.23
17	139	80	59	0.58	31.58	57.58	0.53	0.32
18	136	94	42	0.66	24.66	62.66	0.57	0.40
19	128	95	33	0.66	26.66	58.66	0.79	0.34
20	187	96	91	0.85	22.75	56,75	0.24	0.35
21	143	93	50	0.58	32.58	66.58	0.64	0.37
22	183	95	88	0.66	34.66	64.66	0.59	0.32
Total	3074	2055	1019	14.53	619.53	1163.53	14.26	5.78
Average	139.73	93.41	46.32	0.66	28.16	52.89	0.65	0.26

Diameter increments from rings of trees felled in 1792.

Reventlow: height calculations from stem analysis.

Temporary sample plots (actually, PSP lodgepole pine data from VDYP overlay files, but we ignore re-measuring info for now).

Guide curve.

Other curves proportional (along the vertical) to the guide curve. "Anamorphic". Non-proportional curves ("polymorphic", i.e., not anamorphic) are sometimes used.

PSPs give more information. The info could be used with hand-drawn curves, but it is not used with equation-based guide curve methods.

Guide curve method

Guide curve: H = f(t)Site index curves: H = k f(t) = [S / f(50)] f(t) (anamorphic) E.g., Schumacher: $H = a \exp(-b/t)$ fit $\ln H = \ln a - b/t$, or $\ln H = \alpha - b (1/t)$

Schumacher's model is often used.

Usually fitted after logarithmic transformation. Allows linear regression to be used, and makes the variance more homogeneous (more uniform over time, improving estimation).

Anamorphic = "same shape": vertically proportional.Difficult to know for sure with data like this (far from asymptote).

Exponents, exponentials, logs

$9 \times 9 \times 9 \times 9 = 9^4$ $aa \dots a = a^n$	
$a^{3}a^{2} = (aaa)(aa) = a^{5}$ $a^{m}a^{n} = a^{m+n}$ $(a^{m})^{n} = a^{mn}$	
$a^1 = a$ a^0 ? $a^0 a = a$ $a^0 = 1$	
a^{-1} ? $a^{-1}a^1 = a^0$ $a^{-1}a = 1$ $a^{-1} = \frac{1}{a}$	
$a^{2.5} = aaa^{1/2}$ $a^{1/2}a^{1/2} = a$ $a^{1/2} = \sqrt{a}$ $a^{1/n} = \frac{n}{\sqrt{2}}$	\overline{a}
$a^x a^y = a^{x+y} \qquad (a^x)^y = a^{xy}$	
$10^4 = 10000$ 2^n $e^x = \exp(x)$ (e = 2.718)	

Exponents, exponentials, logs $a^x = y \quad \Leftrightarrow \quad x = \log_a y$ $(a^u)(a^v) = a^{u+v}$ $\log_a(xy) = \log_a x + \log_a y \qquad \log_a(x^z) = z \log_a x$ $\log_{10} x$, $\log x$ common logarithm $\log_e x$, $\log x$, $\ln x$ natural logarithm $\frac{d\log_a x}{dt} = (\log_e a) \frac{1}{x} \frac{dx}{dt}$ $\ln x = \dot{x}/x$

Terminology not very appropriate, these happen to be horizontally proportional (same shape).

- Richards equation (aka von Bertalanffy, Chapman-Richards). Note that site-dependent parameter *b* affects the time scale.
- New Zealand radiata pine PSPs, index age 20.

Mathematical interlude.

Basic idea: different curves for different site qualities, better quality at the top. Infinite number of curves, labeled by parameter q. Any one-to-one transformation of q would serve as well.

Most common labeling scheme: Site index = top height at an index or base age.Obtainable from any other q, and vice-versa.Nothing magic about the base age.

Site Index - Deterministic

- In specific models H = f (t, q) there are adjustable parameters p = (p₁, p₂, ...):
 H = f (t, p, q)
- The p_i are common to all stands or plots "Global"
- *q* is site-dependent, specific to each stand or plot

"Local"

Site Index - Deterministic

Examples:

- Anamorphic Schumacher $H = a \exp(-b/t)$, $a (=q) \log a$, $b \operatorname{global}$ $S = a \exp(-b/40) \rightarrow a = S/\exp(-b/40)$ $\rightarrow H = S \exp[-b(1/t - 1/40)]$
- "Polymorphic" Richards $H = a [1 - \exp(-b t)]^c$, b local, a and c globals $S = a [1 - \exp(-40 \ b)]^c \rightarrow b = - \ln [1 - (S/a)^{1/c}] / 40$ $\rightarrow H = a \{1 - [1 - (S/a)^{1/c}]^{1/40}\}^c$

Equivalent forms with q or S.

In a site index model only the globals need to be given specific numeric values. The *S* or other local parameter chooses a particular curve from the family.

Recap

- Site quality. Site index, SI curves, SI equations
 - Schumacher: H = a exp(-b / t), one of a or b is "local" (site-dependent, q), the other is "global".
 E.g., a = q local → anamorphic
 - Richards: $H = a [1 \exp(-b t)]^c$, one of a, b or c is local.
 - General: $H = f(t, \boldsymbol{p}, q)$, q is local, $\boldsymbol{p} = (p_1, p_2, \dots)$ is global.

Recap

- Temporary plots → guide curve methods
 Anamorphic
 - Polymorphic (using SD by age classes)
- PSP's or stem analysis → more info, many methods

Variability - Stochastics

- 1. Stand height at age 50 "Stand site-index"
- 2. "Expected" height at age 50 "Site site-index"
- Site index: Most likely top height at a base age among all the hypothetical stands that could grow on the site.

- In reality, growth rate will vary because of weather, etc. (blue).
- In addition, there may be measurement and/or sampling errors (green).
- Confusion and controversy.
- Question 1: which/what is the site index now?

Two views:

- 1. Literal. Point on blue curve. Index is a property of the stand!
- 2. More convoluted, trying to stick to the original concept (property of the site): point on the red curve.
- Definitions cannot be wrong; they may be more or less natural, more or less useful.
- I choose definition 2.

Modelling approaches (PSP / SA)

- Parameter prediction
- Mixed effects
- "Difference equation" (Bailey-Clutter)
- Stochastic differential equation (SDE)

Parameter prediction method

- 1. Fit H = f(t, a, b, ...) to each plot
- 2. Calculate *S*-estimate (*H* at *t=50*) for each plot
- 3. Regress $a = g_1(S)$, $b = g_2(S)$, ... $\rightarrow H = f'(t, S)$
- Optionally, tweak to pass through S at *t=50* Not "base-age invariant". Unrealistic statistical assumptions (independence, ...)

Most common. Details vary.

Two stages; fit each plot separately first.

- Often a previously published equation is used, omitting steps 1 and 3, and estimating *S* in step 2
- by interpolation. Needs long time series: plots should have measurements near the index age for good results.
- Isolated data far from it cannot be used. Results depend of chosen index age (method not
 - "base-age invariant").

Mixed effect models

- $\bullet \quad H = f(t, \mathbf{p}, q)$
- Assume *q* "random", with given distribution (usually Normal)
- Assume the stands in the data are a random sample
- Usually assume some covariance structure for successive measurements
- Use linear or non-linear mixed effects models from standard statistical packages

Bailey-Clutter, SDE $\int_{0}^{0} \int_{0}^{0} \int_{$ But growth data is rarely, if ever, a simple random sample from the population.

- Rational estimation requires a reasonable (stochastic) model for the error structure.
- To understand the blue curve, think in terms of increments.

Bailey-Clutter, SDE

- $H = f(t, \mathbf{p}, q) \iff dH/dt = g(H, t, \mathbf{p}, q)$ ■ B-C: $dH/dt = g(H, t, \mathbf{p})$ (site-independent) ■ SDE: $dH/dt = g(H, \mathbf{p}, q) + noise$
- $\bullet H_2 = F(H_1, t_1, t_2, p, q)$
- B-C: $H_2 = F(H_1, t_1, t_2, p)$
- SDE: $H_2 = F(H_1, t_2 t_1, p, q) + accum. noise$

Differential equation obtained from the height curve model, or vice-versa Integration gives transition function

SDE

- dH/dt = g(H, p, q, u(t)) u(t) is "environmental noise" (a stochastic process)
- E.g., $dH^c/dt = b (a^c H^c) + u(t) \rightarrow \text{Richards}$ • $h_i = H(t_i) + \varepsilon_i$
- (measurement / sampling error)
- Integrate, estimate "most likely" p

Scary math

a tays	10 - A	Andel						5	
Title (142 D	ougins In								
Data the IC	Vious binary li	Nes Visek /no	the day	_					Oracia
Sceing	Age	10			wight	10			
	10	4		τ.	<i>e</i> ₀		t ₀	H	
Model	7. SLOCAL	64.	84	62		85, 64	. 6	٠	
		b	ini es	terat	**				
01				62					
ω				64	-				
GS									
41-				4					
						Help	0	Juit	Next

Exan	nple	;					
	graphic graph						
			Ne	w Zealand Douglas	fr		
	70						
	60						
	50 -			he la			
	0.40			Chelon Start	1		
	a free		ditte.	Sto.			
	P 20	1	111				
	30	140	14				
	¹⁰						1
	, 🌽	·					
	0	20	40	60	80	100	120
				Age (years)			

General formulation.

With good data most approaches give reasonable results.

Example: Spruce in the SBS

Combining stem analysis and PSSP data. Dominant trees selected for stem análisis may not have been dominant when young: potencial for bias.

SDE model.

Poor data is more challenging.

Our lodgepole pine data set, only plots with two or more measurements.

Polymorphic Richards (slightly better fit than polymorphic), obtained with method from *Biometrics 39*:1059-1072, 1983.Note site-dependent parameter *b* which gives rise to the family of site index curves.

In summary...

- Guide curve:
 Curve through the middle. Others relative to it, usually proportional (anamorphic).
- Parameter prediction:
 Curve through each plot. "Harmonize": parameters as functions of estimated S.
- State-space (Bailey-Clutter, SDE):
 Growth rate from current *H* (and *t* in B-C). Sitedependent parameter in SDE. Integrate rate.

See http://web.unbc.ca/~garcia/publ/SiteSDEj2.pdf

Site Index in BC ...

- SI models for most species. SiteTools. Through parameter-prediction methods, stem-analysis data.
- At UNBC (to appear):
 - Adrian Batho: S.I. for lodgepole pine. SDE approach. Stem-analysis + PSPs
 - Zhengjun Hu: Same for spruce, + stand growth model

... Site Index in BC

- Site index species conversion
 S₁ = a + b S₂
- Growth intercept models
- Site iIndex Estimates by Site Series (SIBEC)
- Several SI / site variables research studies

www.for.gov.bc.ca/hre/sitetool

www.for.gov.bc.ca/hre/sibec