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• Read each question carefully. Ask yourself what the point of the question

is. Check to make sure that you have answered the question asked.

• This is a 80 minute exam. This exam contains 2 pages of questions
not including this cover page. Make sure that you have all of them.

• Answer all questions in your exam booklet. Clearly indicate which

• Partial marks shall be awarded for clearly identified work.
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1. (a) Explain briefly how arbitrary size integers are usually represented.(3)

(b) What considerations influence the choice of base B?(2)

(3) 2. Give the asymptotic complexities of the “grade school” arithmetic algo-
rithms.

(4) 3. The point of this question is to explain briefly how the recursive part of
Karatsuba’s algorithm works. Suppose that

0 ≤ min(a, b, c, d) ≤ max(a, b, c, d) < Bk a 6= 0, c 6= 0

where B is the base of arithmetic that we are using, and k ≥ 16 is some
positive integer. Explain how Karatsuba’s method computes the product

(aBk + b) · (cBk + d)

(3) 4. Explain the “leading digit trick” and how it helps in long division.

5. Define the following words:2 each

(a) associate,

(b) divisor,

(c) ideal,

(d) integral domain,

(e) irreducible element,

(f) kernel,

(g) principal ideal domain (PID)

(h) principal ideal,

(i) unique factorisation domain
(UFD).
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1 each 6. (a) What are the units of Z × Z?

(b) What are the zero divisors of Z12?

(c) Give an example of an element in Q[[X]] that is not in Q[X].

(d) What are the associates of 6 in Z[X]?

(e) What are the divisors of 6 in Q?

(f) Give an example of a ring that is not an integral domain.

(g) Give an example of a field.

(2) 7. (a) Use Euclid’s algorithm to find the greatest common divisor of 1113 and
4459.

(b) Explain why we can’t use Euclid’s algorithm in the ring Z[X].(2)

8. (a) Consider the function γ from Q[X] to Q that yields the coefficient of(3)
the X1 term, e.g., γ(13X5 − 19X3 + 11X − 2) = 11, γ(X2 + 19) = 0.
Show that γ is not a homomorphism.

(b) Show that the kernel of a homomorphism is an ideal.(3)

(c) Is the function from Q[X] to Q that yields the coefficient of the X0(3)
(constant) term a homomorphism? Justify your answer.

(3) 9. (a) Show that a |b if and only if (b) ⊆ (a), where (a) is the principal ideals
generated by a and (b) is the principal ideals generated by b.

(b) Show that if I and J are ideals; K is the smallest ideal containing I∪J ;(4)
and L = {i + j | i ∈ I, j ∈ J}; then K = L.

[Hints: show that L is an ideal. Show that an ideal that contains I and
J must contain L.]

14 February 2002

Midterm I
page 2 of 2



UNBC CPSC 499

Question Score
1 /5
2 /3
3 /4
4 /3
5 /18
6 /7
7 /4
8 /9
9 /7

Total /60
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