UNBC CPSC 499 Winter 2002 Midterm I—14 February 2002

- Read each question carefully. Ask yourself what the point of the question is. Check to make sure that you have answered the question asked.
- This is a 80 minute exam. This exam contains 2 pages of questions not including this cover page. Make sure that you have all of them.
- Answer all questions in your exam booklet. Clearly indicate which
- Partial marks shall be awarded for clearly identified work.

UNBC CPSC 499

- (3) **1.** (a) Explain briefly how arbitrary size integers are usually represented.
- (2) (b) What considerations influence the choice of base B?
- (3) **2.** Give the asymptotic complexities of the "grade school" arithmetic algorithms.
- (4) 3. The point of this question is to explain briefly how the recursive part of Karatsuba's algorithm works. Suppose that

$$0 \le \min(a, b, c, d) \le \max(a, b, c, d) < B^k \quad a \ne 0, c \ne 0$$

where B is the base of arithmetic that we are using, and $k \ge 16$ is some positive integer. Explain how Karatsuba's method computes the product

$$(aB^k + b) \cdot (cB^k + d)$$

(3) **4.** Explain the "leading digit trick" and how it helps in long division.

 $2 \operatorname{each}$

5. Define the following words:

- (a) associate,
- (b) divisor,
- (c) ideal,
- (d) integral domain,
- (e) irreducible element,

- (f) kernel,
- (g) principal ideal domain (PID)
- (h) principal ideal,
- (i) unique factorisation domain (UFD).

UNBC CPSC 499

1 each	6.	(a) What are the units of $\mathbb{Z} \times \mathbb{Z}$?
		(b) What are the zero divisors of \mathbb{Z}_{12} ?
		(c) Give an example of an element in $\mathbb{Q}[[X]]$ that is not in $\mathbb{Q}[X]$.
		(d) What are the associates of 6 in $\mathbb{Z}[X]$?
		(e) What are the divisors of 6 in \mathbb{Q} ?
		(f) Give an example of a ring that is not an integral domain.
		(g) Give an example of a field.
(2)	7.	 (a) Use Euclid's algorithm to find the greatest common divisor of 1113 and 4459.
(2)		(b) Explain why we can't use Euclid's algorithm in the ring $\mathbb{Z}[X]$.
(3)	8.	(a) Consider the function γ from $\mathbb{Q}[X]$ to \mathbb{Q} that yields the coefficient of the X^1 term, e.g., $\gamma(13X^5 - 19X^3 + 11X - 2) = 11$, $\gamma(X^2 + 19) = 0$. Show that γ is not a homomorphism.
(3)		(b) Show that the kernel of a homomorphism is an ideal.
(3)		(c) Is the function from $\mathbb{Q}[X]$ to \mathbb{Q} that yields the coefficient of the X^0 (constant) term a homomorphism? Justify your answer.
(3)	9.	(a) Show that $a b \text{ if and only if } (b) \subseteq (a)$, where (a) is the principal ideals generated by a and (b) is the principal ideals generated by b.
(4)		(b) Show that if I and J are ideals; K is the smallest ideal containing $I \cup J$; and $L = \{i + j \mid i \in I, j \in J\}$; then $K = L$.
		[Hints: show that L is an ideal. Show that an ideal that contains I and J must contain L .]

UNBC

CPSC 499

Question	Score
1	/5
2	/3
3	/4
4	/3
5	/18
6	/7
7	/4
8	/9
9	/7
Total	/60