
Data Structures II
Fall 2009

These notes are being created in conjunction with the teaching of
cpsc 482 in the Fall 2009 term at the University of Northern British Columbia.

Data Structures: C++ versus Java Here are some language differences
that affect how we implement data structures in C++ versus Java.

templates • Templates in C++ are a compile-time activity that take place
every time that we use a template. At least in theory, the
list<long>-class and the list<float>-class share no machine
code. By link-time the template notation has effectively disap-
peared.
Templates in Java are syntactic sugar for some run-time type
checking. A LinkedList<Long>-class and the LinkedList<Float>-
class share the same JVM byte codes, except that where they are
used there may be some run-time casts.

• Template arguments in C++ are anything that can be determined
at compile-time, including integer constants and the addresses
of externally linked functions. All types can be template argu-
ments.
Template arguments in Java are restricted to class names. Java
classes that build templates around primitive types need to use
wrapper classes.

Embeddedness In C++ objects can physically contain other objects. In
Java objects only every contain [what C++ would call] pointers to
other objects.

A linked list in C++ might typically look like what is shown in Fig-
ure 1, whereas in Java it might more look like Figure 2.

What are the advantages and dis-advantages of the C++ approach?

Storage Management In C++ without garbage collection, one is always
incredibly conscious of ownership issues. In Java subtle memory

September 14, 2009 1



data1 data3data2???

Figure 1: C++ linked list

data1 data2 data3

Figure 2: Java linked list

September 14, 2009 2



use creep can occur because someone forgets to null pointers, but it
is much easier to share data.

In C++ shallow copies are quite rare, as are immutable data struc-
tures.

A guide to the C++ Standard Template Library.

The Standard Template Library was developed by Alexander Stepanov
at Silicon Graphics (and implemented by Meng Lee at Hewlett-Packard)
at the same time that Bjarne Stroustrup was fleshing out the details of
the template mechanism in C++. Consequently the STL is very tightly
integrated with the C++ programming language, and it is now true that
most of the C++ libraries rest on a templated foundation.

Parts The components of the Standard Template Library are:
I. Containers,

II. Algorithms,
III. Iterators,
IV. Function Objects, and
V. Adapters.

Containers . . .
Containers in the STL are what we tend to think of as data structures.

They are further divided into sequential containers and associative con-
tainers.

Sequential containers store elements in a finite ordered sequence. The
three kinds of sequential containers supported by the Standard Template
Library are

1. vector’s,
2. deque’s, and
3. lists.
Associative containers store information in an order defined by the

data. The associative containers in the STL are
1. set’s,
2. multiset’s,

September 14, 2009 3



3. map’s, and
4. multimap’s.

Algorithms
• some examples by name: rotate, reverse, sort.
• the complexity problem of Algorithms × Containers.
• the Standard Template Library solution: iterators.

Iterators
• an iterator (in any programming language) is a means of traversing

a container to access its elements, with the speed of access explicitly
under programmer control (as opposed to Java extended for loop
syntax.)
Iterators allow multiple simultaneous access to a collection at the
same time.

• C++ has operator overloading and pointers, so C++ STL iterators loook
like pointers. There is no STL requirement that iterators implement
a common interface (abstract base class).

• the entire interface between algorithms and containers in the C++

Standard Template Library is through iterators.
• In the C++ STL iterators are not allowed to change the shape of a

container by themselves. In Java they are.
In C++, it is the programmers responsibility to ensure that iterators
remain valid when a container’s shape is modififed. In Java, a con-
tainer invalidates all of its iterators when it is modified.

The Iterator range convention In the C++ STL, pairs of iterators are fre-
quently used to represent a range of data. The convention used is is
that the iterator pair (b, e) represents the data range [b, e). Consequences
include the following:

• iterators need to be able to represent one beyond the end.
• there are multiple representations of the empty data range.
In the Java Collections classes, the claim is that iterators point between

elements rather than at elements. Whence the notion that list iterators
have .next() and .previous() methods.

September 14, 2009 4



The Java List interface provides a .subList(int,int) method for
representing ranges.

C++ iterators for Java speakers Here is a concrete algorithm from the
STL.

template<typename InputIterator, typename OutputIterator>

OutputIterator

copy(InputIterator b, InputIterator e, OutputIterator dest)

{

while (b != e)

*dest++ = *b++;

return dest;

}

Let’s translate this into Java.

Kinds of Iterators There are

1. input,

2. output,

September 14, 2009 5



Table 1: C++ Iterator operations
input output forward bidirectional random

* (left) Y Y Y Y
* (right) Y Y Y Y

++ (pre) Y Y Y
++ (post) Y Y Y Y Y
-- (pre) Y Y
-- (post) Y Y Y Y

==, != Y Y Y Y Y
<=, >=, <, > Y

(arithmetic) Y

3. forward,

4. bi-directional, and

5. random access

iterators.
These iterators all support ++, ==, !=. In addition, they support

input * on the right hand side of assignment.

output * on the left hand side of assignment.

forward essentially both input and output. (Think iterator to singly-
linked list.)

bi-directional (Think iterator to list.) These also support --.

random access (Think pointer.) These also support pointer arithmetic,
[], and all of the comparison operators.

September 14, 2009 6



Figure 3: Input Iterators translated into Java

Figure 4: Output Iterators translated into Java

September 14, 2009 7



Figure 5: Forward Iterators translated into Java

Figure 6: Bi-directional Iterators translated into Java

September 14, 2009 8



Figure 7: Random Access Iterators translated into Java

September 14, 2009 9



Sources of Iterators Each of the Standard Template Library contain-
ers provides .begin(), .end(), rbegin() and .rend() member functions,
each of which returns an iterator. Each container also provides typedefs
for these: for instance,

• std::vector<int>::iterator

• std::vector<int>::const_iterator

• std::vector<int>::reverse_iterator

• std::vector<int>::const_reverse_iterator

The precise type of the iterator depends on the container. The vector

and deque classes give random access iterators; most of the rest give bi-
directional iterators.

Another source of iterators is the <iterator> standard library. This
provides

• adapters like back_inserter,
• templated class adapters like reverse_iterator<...>,
• istream_iterator,
• ostream_iterator.

The connection between algorithms and iterators revisited Now that
we have seen the various types of iterators, we can see that algorithms
must have certain requirements of the iterators that they use. For in-
stance, the sort and random_shuffle algorithms require random access
iterators, which means that they cannot be used on lists, which provide
bi-directional iterators.

September 14, 2009 10


