
Data Structures II
Fall 2009

Red Black Trees

These notes are being created in conjunction with the teaching of
cpsc 482 in the Fall 2009 term at the University of Northern British Columbia.

1 Red Black Trees

Definition A red-black tree is a Binary Search Tree (BST) where every
node is coloured either red or black. The colouring obeys the following
rules:

• every red node has a black parent (consequently, the root is black).

• the number of black nodes on any path from the root to a node with
less than two children is constant over all such paths.

These two properties make red-black trees into a form of B-tree with
branching factor of 2–4, if you regard red nodes as belonging to part of a
super node containing their black parent.

1.1 Insertion

Insertion into a red-black tree is relatively easy to do in a recurive fashion
where you first insert into a subtree recursively, then (possibly) rebalance
the result.

Insertion into a tree — Algorithm Set the root equal to the tree obtained
by inserting into the tree root recursively as below, and then re-colour
the root black if necessary (this is the only way that the black height
increases).

November 15, 2009 1



Insertion into a node — Recursive Algorithm There are preconditions
and postconditions whose maintainance results in a much simpler algo-
rithm.

1. call this algorithm with only black nodes (or null nodes). Deal with
the red nodes internally.

2. ensure that the tree returned by this algorithm has the same black
height as the tree it was called with.

Note that both of these invariants can be checked by your recursive inser-
tion routine. Detection of invariant failure leads to quick debugging.

List of Cases. The algorithm now devolves into a list of cases. Here
is one possible way of dividing into cases.

null tree When inserting into a null tree, simply return a tree consisting
of one red node.

match There is always the possibility that the item that you are inserting
matches the current node.1 2

Otherwise there are symmetric left-right cases depending on how
the value being inserted compares with the value in the current tree
node. The following cases are when the item to be inserted is less
than the value in the current node.

black child node When the child to be inserted into is black (or null),
RECURSIVELY insert into the child, and you are done. Note that the
post-condition of recursive insertion (that the black-height hasn’t
changed) meets black-height invariant of the tree, and becuase the
node is black, it doesn’t matter if the child into which you insert
becomes red.

red child node Things start to become more complicated here. The most
important complication is that we are not allowed to call ourselves

1Remember that (x==y) should imply that (x.comparesTo(y)==0), but that the other
implication may not hold, so some thought about insertion is important.

2If you are using lazy deletion you must check ensure that the lazy delete flag is set.

November 15, 2009 2



R

P

L

A B

D

C

LL rotate

R

L

P

B C

D

A

LR rotate

L

R

P

CB

A

D

RL rotate

L

P

R

DC

A

B

RR rotate

Figure 1: Red Red insert cases before rotate

November 15, 2009 3



L

P

R

DCA B

Figure 2: Red Red insert cases after rotate

recursively yet. We compare the value to be inserted against the
value in the red child and have the following sub-cases.

If the item that you are inserting matches the red child, no tree-
shape or colour changes are needed. Otherwise we pick a left or
right grandchild into which you need to insert. Note that the grand-
child must be black (or null). (Why??) RECURSIVELY insert into
the grandchild.

If the grandchild remains black after the recursive insertion we are
done, and we can return the original node.

Otherwise we have a red child and a (post-insert) red grandchild,
and we need to rotate and re-color. This can be done in a uniform
way. First name everything in sight, as shown in Figure 1. Next,
relink and recolour as shown in Figure 2. Return the new parent
node.

Note Carefully. The node returned from an insertion operation need
not be the same as the original parent. Consequently the caller of the re-

November 15, 2009 4



cursive insert must perform an assignment with the result of the insertion
call.

1.2 Deletion

Deletion from a red-black tree is moderately tricky. Again a recursive
strategy works, where recursively one deletes from a subtree, then rebal-
ances as needed.

When deleting, it is important to keep track of whether the tree cur-
rently being deleted from has lost black-height. Almost all of the compli-
cations of deletion are ensuring that black-height balance is restored after
deletion. To simplify the coding, it pays to have a private, non-static
boolean needsHeightAdjust that is set if there a black deficit.

It also pays to have several subroutines with different responsibilities.
Here is one such way of dividing the labour.

void delete(E); . A top level routine that calls its recursive cousin, and
ensures that the root is set to point to the result of deletion.

Most of the following functions could in principle be static. However, this
fights with using an explicit nullNode.

RedBlackNode<E> delete(RedBlackNode<E>,E); . The recursive manager
of deletion. This recursively calls itself on a child or calls deleteThisNode
as appropriate. It then applies a rebalancing routine.

RedBlackNode<E> deleteThisNode(RedBlackNode<E>); This routine han-
dles the case where we have found the node containing the data we
wish to delete. It is important that this routine sets needsHeightAdjust
appropriately before exiting.

As always when deleting from a BST, there are three cases depend-
ing on the number of children of the node to be deleted.

If there are no children, we are deleting a leaf, and we can simply
return a null node. However, if the node being deleted is black,
we must set needsHeightAdjust, otherwise we clear it. Note that
deleting a black leaf has height consequences that we must fix later
on.

November 15, 2009 5



If there is exactly one child, then we must be a black node, with
one red leaf child. (Why??) In this case we can move the data from
the red node into the black node, delete the red child, and clear the
needsHeightAdjust variable.

If there are two children, we use the standard trick of deleting
the leftmost child of the right subtree (using deleteLeftmost), and
putting that value in the node that we actually want to delete. In
this case, needsHeightAdjust gets set by deleteLeftmost.

RBNode<E> deleteLeftmost(RBNode<E> tree, RBNode<E> w); . This is a
variant of the standard delete routine, used by deleteThisNode to
handle the case where the node we want to delete has two non-
trivial children. It is useful to pass down an extra variable saying in
which node to store the data from the leftmost node being deleted.

This routine should be recursive, so that it can call “rebalance” after
deleting from the left subtree.

Note that the leftmost node of a red-black tree is either a leaf or
black node with one right red child (why???). If we delete a black
leaf, we must set needsHeightAdjust to inform our callers.

RBNode<E> rebalance(RBNode<E> node, int which); . This function re-
balances a node that has had a deletion from a child. The variable
which indicates from which child the deletion occured. It uses and
sets needsHeightAdjust. It returns a better balanced node.

This function is the heart of the difficulty of red-black tree deletion
and is described in more detail below.

1.3 Rebalancing After Deletion

Here we describe the rebalance algorithm in more detail. This function
is called by delete and deleteLeftmost after deleting from a child node.

There is one very easy case. If needsHeightAdjust is false, we can
simply return the node in question.

Otherwise, everything is concerned with the sibling of the child from
which the deletion occured to cause the black deficit. There are four
different cases.

November 15, 2009 6



x

y

C d

A

Before

x

y

C
d

A

After

Figure 3: Deletion: Red sibling rebalance

x

d

A y

c

Before

x

d

A y

c

After

Figure 4: Deletion rebalance: Lots of blacks

November 15, 2009 7



x

w

d e

A y

c

Before

x w

d eA

y

c

Done

After

Figure 5: Deletion: Black neice rebalance

Case I. The sibling is red, as shown in Figure 3. In this case, we per-
form the rotate shown in Figure 3, then recursively rebalance
first x, then y. This looks dangerously like it might lead to in-
finite recursion, but we have improved the situation because
after the rotation A’s sibling is black.

Case II. The sibling is black, as are both its children, as shown in Fig-
ure 4. This case may seem very special, but it is worth checking
for because it doesn’t require any rotations, just recolouring.
We recolour the sibling red, which makes the sibling’s tree’s
black count match that of the child which had the deletion.

The only possible conflict occurs when the original node (x in
Figure 3) is red. However, this is a blessing in disguise. If the
original node is red, we recolor it black and set needsHeightAdjust
to false. Otherwise, we leave it black and let the black deficit
trickle up.

The remaining cases are ones where the sibling is black, but at
least one of its children is red.

Case III. If the sibling is black, and its “closest” child is black as shown
in Figure 5, then we can perform a single rotate as shown in
that figure. The result of this rotation is fix the black deficit, so
we can set needsHeightAdjust to false.

November 15, 2009 8



x

y

C d

A w

e

Before

x w

d eA

y

c

Done

After

Figure 6: Deletion: Red neice rebalance

In this case the color of the original root is unknown, but we
need to be careful to transfer it to the new root. Also note that
the color of the “far nephew” changes from red to black.

Case IV. If the sibling is black, and its “closest” child is red as shown in
Figure 6, then we can perform a double rotate as shown in that
figure. The result of this rotation is fix the black deficit, so we
can set needsHeightAdjust to false.

In this case the color of the original root is unknown, but we
need to be careful to transfer it to the new root. Also note that
both children become black.

2 Implementation Hints

It pays to write code to check invariants.
It pays to create code to print or otherwise display red-black tree struc-

tures very early on. These can be used to print output when invariants
fail.

It pays to have drawings of before and after pictures for surgery.

November 15, 2009 9



A general strategy for surgery is to name everything in sight with lo-
cal variables first (consulting your drawings). Then perform the surgery.
Then check the “after” drawing and ensure that there are assignments or
reasons that every link and color is as shown in the drawing.

November 15, 2009 10


