
Functional and Logic Programming

Fall 2022

Review of Sets and Functions.

Contents
1 Introduction 1

2 A Review of Sets and Relations 2

3 Multi-argument functions and Currying 5
3.1 Currying . 6

4 Function Composition 7
4.1 Function composition . 7

5 Functions in Programming Languages 8
5.1 Functions and Types . 8

5.1.1 Syntax Notes . 9

1 Introduction
These notes are being created in conjunction with the teaching of cpsc 370

in the Fall 2022 term at the University of Northern British Columbia.

These notes are a work in progress, and copyright belongs exclusively

to David Casperson.

Functional programming has far more to do with programming than it

does with mathematics. Nevertheless, it is important to understand how

functions in the mathematical sense relate to functions (or methods or

programs or subroutines) in computer science sense.

September 9, 2022 1

2 A Review of Sets and Relations
I assume that you know Chapter 3 of Grimaldi. In particular, you know

about sets, set union (A ∪B) , set interactions (A ∩B) , Cartesian products

(A×B) , and power sets (P(A) := {B : B ⊆ A}).
I also assume that you know basic cardinality formulas:

• |A ∪B|+ |A ∩B| = |A|+ |B|.
• |A×B| = |A| · |B|.
• |P(A)| = 2|A|.

Relations A relation r is just a subset of a Cartesian product; typically the

product is of two sets andwe speak of binary relations, but products of three
sets (termary relations), or more are possible. One common application of

high arity relations is tables in relational databases.

For instance, the set q = { (a, b) ∈ R× R : a < b} is a binary relation on

R. We normally call this relation “<”. We often write a q b as a short form

for (a, b) ∈ q.

+ Question 1. How many distinct binary relations are possible between a

five-element set and a two-element set?

Partial Functions Partial functions are a new idea that lies part way

between relations and functions. Every function is a partial function1

Every partial function is a relation. However, not every relation is a partial

function, and not every partial function is a function.

Definition 2. A relation r where r ⊆ D × C is a partial function from D to

C that satisfies the following well-definedness property:

• if (d, c1) ∈ r and (d, c2) ∈ r then c1 = c2, in cpsc 141 notation

F1 ∀d ∈ D ∀c1, c2 ∈ C (d, c1) ∈ r & (d, c2) ∈ r → c1 = c2.

More informally, a relation is a partial function if every question has at

most one answer. Note that we translate “at most one” into “if there are

two, then they are the same”.

1Note really carefully that “partial function” means “could be partial”, not “is not a
function”.

September 9, 2022 2

Functions A function is a partial function where every question has an

answer. Every function is a partial function. However, not every partial

function is a function.

Definition 3. A relation r where r ⊆ D × C is a function from D to C that

satisfies the following two properties:

• if (d, c1) ∈ r and (d, c2) ∈ r then c1 = c2, in cpsc 141 notation

F1 ∀d ∈ D ∀c1, c2 ∈ C (a, c1) ∈ r & (a, c2) ∈ r → c1 = c2.

and

• if (a ∈ D then there is a c ∈ C such that (a, c) ∈ r, in cpsc 141 notation

F2 ∀a ∈ D ∃c ∈ C s.t. (a, c) ∈ r.

More informally, a partial function is a function if every question has at

least one answer, or equivalently, a relation is a function if every question

has exactly one answer.

In the above situation, the set D is called the domain, and the set C

is called the co-domain. The set { c ∈ C : ∃d ∈ D[(d, c) ∈ r]} is called the

range.2
For f a function fromD to C, the notation f(d)means the unique value

c ∈ C such that (d, c) ∈ f . In other words, f(d) = c if and only if (d, c) ∈ f .
If f is a partial function, then f(d)may not be defined.

Notation for functions Mathematicians tend to define functions in one

of two ways. When giving a name, they often write something like f(x) =

2 + x. which implicitly defines f as a function. Which function? Well, we

need to know the domain of f to answer that question; suppose that f is a

real-valued function, then f is the set { (r, r + 2) | r ∈ R}.
If they don’t want to give the function a name, they’ll sometimes write

x 7→ 2+x,which means the same as the above. Note that it actually makes

sense to write f = x 7→ 2 + x.

2Strictly speaking, we cannot determine the domain or co-domain of a binary relation

from its set of pairs alone. For this reason it is more correct to consider a partial function

or function to consist of a triple: the domain, the co-domain, and the set of pairs that

defines its relation.

September 9, 2022 3

Sets of functions The set of functions from the setA to the setB iswritten

BA
. Note carefully that the co-domain is the base and the domain is the

superscript. Part of the reason for doing so is the cardinality equation:∣∣BA
∣∣ = |B||A| .

The notation f ∈ BA
means by definition that f is a function from A to B.

Mathematicians sometimes write this as “f : A→ B” or even “A
f−→ B”

Reverses, inverses, one-to-one, onto Suppose that f : A → B is a

function. Because f is a function, it is a relation, that is a set of pairs

(a, b) ∈ A × B. Therefore we can define another binary relation f rev

from

B to A defined by f rev = { (b, a) ∈ B × A : f(a) = b}. A natural question is:

when is f rev

a function?

It turns out that f must have two properties for f rev

to be function.

1. f must be one-to-one, which means that for all a1, a2 ∈ A if f(a1) =

f(a2) then a1 = a2. Note that one-to-one is not the same as being a

partial function. Howwever, it is close. If f is one-to-one, then f rev

is

a partial function.

2. f must be onto, which means that for all b ∈ B there is an a ∈ A such

that f(a) = b. In other words, the range of f is the entire co-domain.

Again, note that onto is not the same as property F2. Howwever, if f

is onto and f rev

is a partial function, then f rev

is a function.

When the relation f rev

is a function, it is the inverse functionof f : f rev(f(x)) =

x and f(f rev(y)) = y.

To summarize: a function is invertible if and only if it is one-to-one and

onto. The inverse of an invertible function can be gotten by reversing all of

the pairs.

Converting partial functions to functions Mathematicians and com-

puter scientists tend to feel more comfortable dealing with functions than

with partial functions.

In mathematics, you can often “fix” a partial function simply by re-

stricting its domain. For instance, f(x) = 1/x is a partial function on R,
but a total function on the set R \ { 0}. However, in many programming

languages, we don’t have a way to name the set R \ { 0}, so we are stuck

with

September 9, 2022 4

public static double f(double x) { return 1.0 / x ; }

which is a partial function.

One standard way that any partial function can be converted to a func-

tion is to extend the co-domain by one element. If f is a partial function

from A to B, we can extend it to a function f⊥from A to B⊥ = B ∪ {⊥}
(where ⊥ /∈ B) as follows:

f⊥(x) =

{
f(x) when f(x) is defined,

⊥ otherwise.

(1)

+ Question 4. Let B = {true,false} be the set of Boolean values. How

many partial functions are there from B× B to B?

+ Question 5. Let B = {true,false} be the set of Boolean values as above,

and let U = { scissors, paper, rock,Spock, Lizard,}. How many partial func-
tions are there from S × S to B?

In Java, if the co-domain is a class type, then it is natural to extend

partial functions by using null to extend the co-domain. This leads to

ambiguity as to whether the intended co-domain includes the null value.3

3 Multi-argument functions and Currying
There’s a tension between how mathematicians speak of functions as hav-

ing one domain, and computer languages like Java talking about functions

with multiple (or even zero) arguments. Even mathematicians talk about

things like “two argument functions” and “partial derivatives”. What’s

going on?

The answer is that the domain can be a Cartesian product of sets, so

h(x, y) = yex

is likely a function whose domain is R × R and whose co-domain is R.
Similarly,

g(n, x) = cosnx

3See https://blogs.oracle.com/java/post/java-8s-new-type-annotations.

September 9, 2022 5

https://blogs.oracle.com/java/post/java-8s-new-type-annotations

might be a function whose domain is N× R and whose co-domain is R.
What is g as a set? Well, it’s an infinite set. It contains domain/co-

domain pairs like ((0, 4.2), 1) and ((2, π/3),−1
2
), where each domain ele-

ment is itself a pair. What happens if we re-bracket the elements? Like

(0, (4.2, 1)) and (2, (π/3− 1
2
))? The result is not a function, because pairs in

g like ((1, 0), 1) and ((1, π),−1) become pairs like (1, (0, 1)) and (1, (π,−1)),
which violate the “at most one answer” rule. However there is a function

lurking here.

3.1 Currying
Sometimes we want to think of g as a series of cosine functions, like

cn(x) = g(n, x) = cosnx

It’s clear what c3(π/2) is. We have c3(π/2) = g(3, π/2) = cos(3π/2) = 0.

What is c3? It’s the function x 7→ cos 3x. Similarly c0 is the function

x 7→ cos 0x (or x 7→ 1).

Here’s the big question. What is c? It’s a function fromN to the cns, that

is, it’s a function from N to RR
, that is c : N → (R → R). Notice that the

domain of c is simpler than the domain of g, it’s just natural numbers rather

than pairs. However, the co-domain is more complicated: it is functions

from R to R, that is sets of pairs from R × R. For instance c contains the

pair

(1, c1) = (1, { (0, 1), (π,−1), . . .})

This is the function that we hinted at at the end of the previous section.

One of the characteristics that distinguishes functional programming

languages like Haskell fromC
++
is that in Haskell functions can return func-

tions as their value, like c above.

We can write this mathematically as:

c : N→ (R→ R), n 7→ (x 7→ cosnx). (2)

We cannot directly write a function like c this inC++
but we will see howwe

can write this in Haskell. This act of converting a function from the form

N× R→ R to the form N→ (R→ R) is called Currying.

September 9, 2022 6

Currying is in honour of Haskell Curry, who did a lot of early explo-

ration of what we now call the λ-calculus. He wanted a way to talk about

multi-argument functions without needing to define what pairs and cross-

products. He noticed that Cartesian product domains weren’t necessary if

the functions were “Curried”.

Note that the the legitimacy of Currying a function is suggested by

standard exponention laws. For positive integers we have cab = cba = (cb)a.

Clearly this doesn’t work exactly for sets,A×B 6= B×A, but it does suggest
that the function ((n, x) 7→ sinnx) ∈ RN×R

is likely intimately related to the

function (n 7→ (x) 7→ sinnx)) ∈ (RR)N.

4 Function Composition

4.1 Function composition
Computer programmers are quite familiar with the notion of using “func-

tions” to build other “functions”, and all main-stream programming lan-

guages have mechanisms for designing separate functions and calling one

from the other.

In mathematics too functions can be composed, but the form of compo-

sition is much stricter. If we write h = f ◦ g we mean that h(x) = f(g(x)).

Note that “◦” is itself a function that takes functions as arguments and

returns a function.

September 9, 2022 7

5 Functions in Programming Languages
Many programming language methods are not functions, often by design

because they return multiple answers to the same question. For instance,

consider the Java static method System.nanoTime() .

+ Question6. Is the Java“function”Math.randomwith signatureint random()

a mathematical function?

+ Question 7. Is the Java “function” System.out.println with signature

void println(?) a mathematical function?

Note also that most conventional programming languages deal mainly

with (partial) functions, and not more general relations. Prolog is a notable

exception, as we shall see later in the course.

HaskellNotation for functions InHaskell function definitions looks quite

similar to math:

f(x) = 2 + x

\ x -> 2+x -- In math x 7→ 2 + x

f = \ x -> 2 + x ;

Note that there is notation for anonymous functions, that is functions that
have no associated name. This is a common characteristic of functional

programming languages. By contrast, in Java every function is a named

method of class.4 In C
++
, functions may exist outside of classes, but they

still must be named5.

5.1 Functions and Types
Haskell is staticly and strongly typed, meaning that the exact type of every

expression is known at compile time. Paradoxically, Haskell is so strongly

typed that we frequently don’t need explicit type declarations.

4When these notes were first written, Java did not have λ-expressions. The claim is

still true, but Java now has nice functional syntax for writing nearly anonymous methods

that are part of anonymous classes that implement a “functioncal” interface.

5No longer true as ofC++
11. This is becauseC++

is now explicitly embracing some ideas

from function programming languges.

September 9, 2022 8

However, we can, and frequently do, explicitly declare the type of

functions. For instance, we can write

f :: Int -> Int -- math f : Z → Z
f(x) = 2 + x

or

g :: (Int,Double) -> Double -- math g : Z× R → R
g (n,x) = cos (fromIntegral n * x)

We can also Curry g as above and write

c :: Int -> Double -> Double -- math c : Z → R → R
c n x = cos (fromIntegral n * x)

5.1.1 Syntax Notes

There are some syntax points snuck into the examples above.

1. -- introduces a comment that runs to the end of the line

2. “->” is used to be build function types from plain types.

3. “->” associates to the right. That is “c :: Int -> Double -> Double”

means

“c :: Int -> (Double -> Double)” and not
“c :: (Int -> Double) -> Double”.

4. The math “x 7→ . . .” translates into the Haskell “\ x -> ...”.
5. Brackets are sometime necessary, but not for function application.

“fromIntegral n” is ok, and the same as “fromIntegral(n)”.

However the brackets in “cos (fromIntegral n * x)” are neces-

sary in order to force cos to be applied to the entire argument, rather

than just “fromIntegral”.

6. Curried functions are easy to write. The follwoing three declarations

are equivalent.

c n x = cos (fromIntegral n * x)

c n = \ x -> cos (fromIntegral n * x)

c = \ n -> (\ x -> cos (fromIntegral n * x))

September 9, 2022 9

Converting partial functions to functions in programming languages
In C-like languages, some library functions employ this technique of ex-

tending the domain by one element in a disguised fashion. They return a

pointer to the desired result, and return a null pointer to indicate an input

outside of the domain of the function.

In strongly typed functional languages like Standard ML and Haskell
there are standard types that add a ⊥-like value. In particular, Haskell has
a Maybe type function that adds the value Nothing For instance, on can

write

arcCosH x = if x < 1

then Nothing

else Just (log (x + sqrt (x^2 - 1)))

To be continued. . .

September 9, 2022 10

	Introduction
	A Review of Sets and Relations
	Multi-argument functions and Currying
	Currying

	Function Composition
	Function composition

	Functions in Programming Languages
	Functions and Types
	Syntax Notes

