Functional and Logic Programming cpsc 370 Winter 2022 Sets — Self Check—Friday, Jan 07 2022

Review

- **1.** Be sure you understand:
 - (a) Why Cartesian products are (almost) associative
 - (b) the formula for the cardinality of a Cartesian product.
 - (c) the formula for the cardinality of a powerset
 - (d) how the above two give the cardinality of the number of relations on $A \times B$.
- **2.** Be sure you understand:
 - (a) the predicates that say when a relation f on $A \times B$ is function $f : A \rightarrow B$.
 - (b) the formula for the cardinality of B^A .
 - (c) the meaning of: **domain**, **co-domain**, **range**, **one-to-one**, **onto**.
 - (d) the predicates that say when a relation f on $A \times B$ is *partial* function $f: A \rightarrow B$.
 - (e) how you can always convert a partial function to a function by extending the codomain by one element.
- **3.** Be sure you understand the "isomorphism" between $C^{A \times B}$ and $(C^B)^A$.
 - (a) In $f_3(x) = \cos(3x)$, whet is f_3 ? (domain? co-domain?)
 - (b) Ditto, $f_n(x) = \cos(nx)$.
 - (c) How does this relate to $g(n, x) = \cos(nx)$?

4. Sometimes it is useful to consider subsets as defined by a function on the larger set that returns true if and only if an element is a member of a subset. Let 2 = { ⊤, ⊥ } be the set containing true (⊤) and false (⊥). The observation about subsets means that the power set of *S*, *P*(*S*) can be thought of as a set of functions: *P*(*S*) ≡ 2^{*S*}.

Use this and Currying to explain why a relation *r* on $S \times T$ can be thought of as a function \hat{r} from *S* to $\mathcal{P}(T)$.