
Functional and Logic Programming — Monads
Fall 2018

These notes are being created in conjunction with the teaching of
cpsc 370 in the Fall 2017 term at the University of Northern British Columbia.

These notes are based on notes previously created for cpsc 720 in the
summer of 2013 at the University of Northern British Columbia.

These notes are a work in progress, and copyright belongs exclusively
to David Casperson.

Contents

1 Category Theory 1
1.1 Category Theory definitions 1

1.2 Diagrams . 4

2 Functors and the Category of Categories 5
2.1 Examples of functors in Haskell 6

3 Endo-functors and Monads 7

4 More about Haskell types 9
4.1 Haskell classes for Category Theory 10

5 “do” notation and Monads in Haskell 11

6 A “Useless” Monad 13

7 Standard Haskell Monads 13

1 Category Theory

1.1 Category Theory definitions

A category C is a collection of objects and arrows. Before going any further,
here are some examples of categories

November 5, 2018 1

Examples

• the category of vector spaces: the objects are vector spaces, the ar-
rows are linear transformations between vector space;

• the category of sets: the objects are sets, and the arrows are arbitrary
functions between sets;

• the category of groups: the objects are groups, and the arrows are
group homomorphisms between groups;

• the category of topological spaces: the objects are topological spaces,
and the arrows are continuous functions.

• a very small category (whose name I forget) that consists of one
object and one arrow that goes from that object back to itself.

• the category of Haskell types. Here the objects are Haskell type
names, and the arrows are Haskell functions.

Notation

Mathematicians typically use curly letters (C, D, P , G, and so on) to stand
for entire (unspecific) categories. Specific categories we give names like
Set. We use capital letters like C and D for objects, and lower case letters
like f and g for arrows. To further help distinguish objects and arrows,
we denote membership slightly differently, and write C ∈ D, but f inD.

An arrow goes from one object to another (possibly the same object).
To say that f is an arrow from C to D we write: f : C → D, or sometimes

C
f−→ D. Since every arrow has exactly one starting point and one ending

point, we can define domain (dom) and codomain (cod) operators. for

f : C → D we have dom f = C and cod f = D.

Furthermore, each object C has an arrow idC : C → C.

Arrow Composition

Every category has a partial operation on arrows, ◦, that behaves like
function composition.

November 5, 2018 2

For a pair of arrows f and g such that f ends where g starts, that
is, cod f = dom g, there is an arrow g ◦ f from the domain of f to the
codomain of g.

It may help to name some things: For a pair of arrows f : C → D and
g : D → E there is a unique arrow g ◦ f : C → E. We can capture this in a
commuting diagram. See Figure 1.

The operation ◦ is associative:

h ◦ (g ◦ f) = (h ◦ g) ◦ f . (1)

and composing with an identity arrow does nothing. For any arrow f :
C → D we have

f ◦ idC = idD ◦ f = f (2)

A commuting diagram for this is shown in Figure 2.

f

C

D E
g

g �
f

Figure 1: A diagram for arrow composition

fC D

C D
f

fidC idD

Figure 2: A commuting diagram for identity arrows

November 5, 2018 3

Summary

1. A category C consists of objects and arrows.
2. For every object D ∈ C there is an arrow idD in C from D to D.
3. Every arrow f in C starts at an object dom f ∈ C and ends at an

object cod f ∈ C.
4. For a pair of arrows f , g in C where cod f = dom g there is an arrow

g ◦ f : dom f → cod g.
5. Arrow composition is associative: h ◦ (g ◦ f) = (h ◦ g) ◦ f .
6. Identity arrows compose as expected:

h ◦ iddom h = h and idcod h ◦ h = h.

The Haskell category

Of particular interest to cpsc 370 students is the category of Haskell types
and functions. For convenience we will denote this category Hask. The
objects of Hask are Haskell types, and the arrows are functions.

Fact 1. The id operator in the category of Haskell types is the function “id”
(defined by

id :: a -> a

id x = x

). Because Haskell allows type polymorphism “id” works for all types.

Fact 2. The ◦ operator in the category of Haskell types is just function composi-
tion and is written “.”.

We can define our own function composition if we want:

infixr 9 !!!

(g !!! f) x = g (f x)

1.2 Diagrams

Frequently we draw pictures to say these things. For instance, Figure 1

illustrates arrow composition, and Figure 2 illustrates (2).

November 5, 2018 4

If every arrow path through a diagram from one point to another
composes to the same arrow, we say that we have a commuting diagram. A
lot of the utility of category theory comes from being able to understand
complicated ideas in terms of pictures (commuting diagrams).

Figure 3 shows a commuting diagram in the category of Haskell types.
The Hask category has types as its objects, and functions as its arrows.

We can draw commuting diagrams as shown in Figure 3.

Int

Int String

String

(
`
d
i
v
`

1
0
)

i
n
i
t

show

show

Figure 3: A commuting diagram in the Haskell category

2 Functors and the Category of Categories

Yes, there is a category of all categories, which we denote Cat. The objects
in Cat are categories, the arrows are functors.

Loosely speaking a functor is something that copies diagrams from
one category (its domain) to another category (its codomain).

A functor F is a function between two cateories (say C and D). To be a
functor F must satisfy the following rules:

• F maps objects to objects. If C ∈ C is an object in C then F(C) is an
object in D.

• F maps arrows to arrows as follows. If f : A → B in C is an arrow
in C then F(f) : F(A)→ F(B) in D is an arrow in D.

• F preserves domains, co-domains, and compositions of arrows. More
precisely:

dom(F f) = F(dom f) (3)

November 5, 2018 5

cod(F f) = F(cod f) (4)

F(g ◦ f) = F(g) ◦ F(f). (5)

• F preserves identiy arrows:

F(idA) = idF(A). (6)

To recapitulate, a functor is an arrow between two categories that con-
sists of two functions: one that maps objects to objects, and one that maps
arrows to arrows.

An Example

For instance there is a functor, called the forgetful functor from the cate-
gory of vector spaces to the category of sets. The objects of the category
of vector spaces are vector spaces. They get mapped to the objects of the
category of sets, namely sets. The arrows of the category of vector spaces,
namely linear transforms, get mapped to the arrows of the category of
sets, namely plain old functions. Since every vector space is a set, and
every linear transform is a function on the underlying set of vectors, this
works.

2.1 Examples of functors in Haskell

The Haskell category has types as its objects, and functions as its arrows.
What are functors here then? More specifically what functors are there

that go from the Haskell category back to itself? First we need some that
maps objects (that is, types) onto objects. We already know about several
of these! Maybe, Either String, and we can create our own, for instance,

type Triple x = (x, (x,x)) -- our own weird definition

However, an object map by itself is not enough. We also need an associ-
ated arrow map, that is a map from functions to functions.

For instance, for the Maybe type function, we need a map of type (a

-> b) -> (Maybe a -> Maybe b) . Here is one possible definition

maybeMap :: (a -> b) -> (Maybe a -> Maybe b)

maybeMap f Nothing = Nothing

maybeMap f (Just x) = Just (f x)

November 5, 2018 6

Not every definition will do! We need to check that maybeMap (g . f)

equals maybeMap g . maybeMap f, and that maybeMap (id :: a-> a) equals
id :: Maybe a-> Maybe a .

similarly, we can define

tripleMap :: (a -> b) -> (Triple a -> Triple b)

tripleMap f (u,(v,w)) = (f u, (f v, f w))

and check that it also obeys the appropriate functor laws.
To tell Haskell that a type function is part of a functor, we say that it is

an instance of the class Functor. For instance, we can write

instance Functor Triple where

fmap f (u,(v,w)) = (f u, (f v, f w))

-- {- or -} fmap = tripleMap

In other words, the Functor class requires one function, fmap . Many
Haskell type functions (such as Maybe) have already been declared to be
instances of the Functor class.

3 Endo-functors and Monads

An endo-functor is a functor from a category back to itself.

Fact 3. There are several interesting endo-functors on the category of Haskell

types. One of these relates to Haskell lists. On objects, it maps a type T to [T]

(lists of T). On functions, it maps f to map f.

Recall that map is defined on lists by

map f [] = []

map f (x : xs) = f x : map f xs

+ Question 4. Verify that [] and map indeed give an endo-functor on the
category of Haskell types.

+ Question 5. Show that map T 7→ Maybe T is the object part of an endo-
functor on the category of Haskell types. What is the corresponding
map on arrows (here functions)?

November 5, 2018 7

A monad is a special kind of endo-functor. Mathematicians usually
define a monad as a triple (T, η, µ) where T is an endo-functor, and η and
µ are natural transformations (whatever that means1) Computer scien-
tists often use an equivalent definition involving Kleisli triples. The triple
(T, η, ∗) is a Kleisli triple if

• T is an endo-functor.

• ηC is an arrow from C to TC.

• For f : C → TD, f ∗ is an arrow f ∗ : TC → TD.

• For f : C → TD,
f = f ∗ ◦ ηC. (7)

Fact 6. The endo-functor on the category of Haskell types give by T 7→ [T]

and f 7→ map f is also a monad. Here the η function is given by

singleton :: a -> [a]

singleton x = [x]

and the ∗ function is given by

star :: (a -> [b]) -> ([a] -> [b])

star f aList = (concat . map f) aList

.

Fact 7. The endo-functor on the category of Haskell types give by T 7→ Maybe T

and the function from Question 5 also form a monad.

+ Question 8. What are the η function and the ∗ function for the (Maybe,η, ∗)
monad?

Suppose that (T, η, ∗) is a Kleisli triple. Consider the expression (η∗)∗.
Take an object C ∈ C. Then ηC is an arrow ηC : C → TC, so we can apply
star to get an arrow η∗C : TC → TC. When we apply ∗ again we get an
arrow (η∗C)

∗ : T(TC) → TC. This is usually where mathematicians start.
What we call η∗∗ they usually call µ.

We can also define ∗ in terms of µ. If f : C → TD is an arrow, then
so is µ ◦ T f : TC → TD, and in fact this is f ∗. (To reason about these
kinds of things, mathematicians often draw diagrams like Figure 4.) The
conclusion is that it doesn’t matter whether we start with ∗ or with µ.

1something like a function between functors.

November 5, 2018 8

C TD

TC TTD

f

Tf

⌘C µf⇤

Figure 4: Chasing arrows for f ∗

Example 9. Let us work out what µ is for the list monad.
Chasing definitions we get that µ =

concat . map $ concat . map $ \ x -> [x]

This looks pretty intimidating, but let’s work out

concat (map (\ x -> [x]) [1,3,2])

This is concat [[1],[3],[2]] or [1,3,2]. In fact, in general,
“concat . map $ \ x -> [x]” is “id” on any list type. So
µ = concat . map $ id = concat . map id = concat . id

= concat .

+ Question 10. What is µ in the Maybe monad?

4 More about Haskell types

Haskell has ad hoc type classes. The closest Java idea is an interface .
The syntax of a class definition uses the keywords class and where

and is

class ClassName typeParm where

decls...

For instance,

class PluralizableClass c where

many :: c -> [c]

singular :: [c] -> c

November 5, 2018 9

says that a class c is a PluralizableClass if it has functions many and
singular with the appropriate signatures.

To say that a particular type is an instace of a class (translation to Java:
“to say that a particular class implements an interface”) we use the keywords
instance and where .

For instance, suppose that we have our own data type

data Some a = One a | Two a a | Lots [a]

we can write

instance PluralizableClass (Some a) where

many (One x) = [x]

many (Two a b) = [a,b]

many (Lots xs) = xs

singular [x] = One x

singular [x,y] = Two x y

singular xs = Lots xs

4.1 Haskell classes for Category Theory

There are three Haskell classes relevant to monads. They are Functor,
Applicative, and Monad. Every Monad is an Applicative, and every
Applicative is a Functor.

Slightly simplified class definitions are

class Functor t where

fmap :: (a -> b) -> (t a -> t b)

class (Functor t) => Applicative t where

pure :: a -> t a

<*> :: t (a -> b) -> t a -> t b

class (Applicative t) => Monad t where

return :: a -> t a

>>= :: t a -> (a -> t b) -> t b

November 5, 2018 10

The Functor class corresponds directly to mathematical functors, with
fmap being the arrow (function) map that corresponds to the object (type)
map t.

The Applicative class is slightly odd. Its “pure” function is like
“return” in monads. The <*> function says that lifted functions can be
applied to lifted objects. Not all Applicative t are monadic, but for those
that are, star defined in the monad as

star :: Monad m :: m (a -> b) -> m a -> m b

star ff xs = do

f <- ff

x <- xx

return (f x)

is equivalent to <*>.
The Monad class is a fairly direct translation of Kleisli triples. Its

“return” function is polymorphic and corresponds to η. The Haskell
“m >>= f” is the Kleisli f ∗(m).

5 “do” notation and Monads in Haskell

Consider the Haskell code

do

x <- [1,2,3]

y <- ["a", "b"]

return (x,y)

This computes the list

[(1,"a"), (1,"b"), (2,"a"), (2,"b"), (3,"a"), (3,"b")] .

How does this work? First of all, “do” blocks always involve monads.
Here the monad is the list monad. The result is always in the monad (in
this example, “is a list”). Haskell converts the code above to

[1,2,3] >>= (\ x -> ["a", "b"] >>= (\ y -> return (x,y)))

This is generic. Now, in the list monad this becomes,

[1,2,3] >>= (\ x -> ["a", "b"] >>= (\ y -> [(x,y)]))

November 5, 2018 11

or

concat . map(\x-> ["a", "b"] >>= (\y-> [(x,y)]) $ [1,2,3]

or

concat . map(\x-> concat . map(\y-> [(x,y)]) $ ["a", "b"]) $ [1,2,3]

Most people find the “do” notation easier to read and understand intu-
itively even if they’ve never heard of an endo-functor.

More formally the rules for a do expression are

• do { pat <- expr; ... } means the same as
expr >>= (\pat -> do {...})

• do { expr; ... } . means the same as
expr >>= (_ -> do {...}) .

• do {expr} means the same as expr.

+ Question 11. What does

do

x <- Just 5

y <- Just 3

return $ x*y

compute?2 Check it out!

+ Question 12. What does

do

x <- Just 5

return $ x * x

y <- Just 3

return $ y*y

compute? Check it out!

+ Question 13. Suppose that we define

2Beware! return x * y generates a strange error because it parses as
(return x) * y . Be very aware that return is not a control structure.

November 5, 2018 12

data Array a = Leaf a | Tree Integer (Array a) (Array b)

-- ...

append a b = Tree (size a + size b) a b

catamorph leaf tree x = case x of

Leaf a -> leaf a

Tree n a b -> tree (cata leaf tree a) (cata leaf tree b)

1. What does “catamorph” do? In particular,

2. What does “catamorph Leaf append” do?

3. What does “catamorph (const 1) (+)” do?

4. What is the type of “catamorph” ?

5. What is the type of “catamorph id append” ?

6. Can you build a monad using Array as the object functor?

6 A “Useless” Monad

Consider the Empty type defined by

data Empty a = Void

This type raises some puzzling type questions, such as, what is the dif-
ference between “Empty (Empty String)” and “Empty Integer”?

Nonetheless, it gives rise to a monad.

+ Question 14. Determine what return and >>= are for the Empty monad.

7 Standard Haskell Monads

Here is a list of pre-built Haskell monads. To use, for instance, the State

monad, import Control.Monad.State .

1. The Identity monad. The object (type) function maps a to a.

November 5, 2018 13

2. The Reader monad is paramaterized by an additional type parame-
ter rṪhe object (type) function maps a to r -> a. “return x = \ _ -> x”
or “return = const”.

This monad is hidden in undergraduate mathematics where we con-
fuse the number 3 with the constant function on the real numbers
x 7→ 3.

3. The State monad is paramaterized by an additional type param-
eter sṪhe object (type) function maps a to s -> (s,a). We have
“return x = \ s -> (s,x)”.

The state monad corresponds to computing with memory.

. . . to be continued.

November 5, 2018 14

