
Questions
for

Functional Data Structures — Fall 2013

1 Computing the roots of quadratics

In high-school most of learn that the equation ax2 + bx + c = 0 has two
solutions given by

ri =
−b±

√
b2 − 4ac

2a
. (1)

In fact, if b2 < 4ac there are no real solutions, and if b2 = 4ac there is one
(repeated) solution. Furthermore, if |ac| � b2 then Equation (1) is a poor
way to compute the smaller root.

It is also the case that if r1 and r2 are the roots of ax2 + bx + c = 0 then
−r1 and −r2 are the roots of ax2− bx + c = 0. It is also true that ar1r2 = c.

Putting all of these facts together we can come up with the following
algorithm for computing the roots of a quadratic.

1. If b > 0, replace b with −b, solve, and then return the negative of
the roots found.

2. If a = 0, we don’t have a quadratic. Fail.

3. Otherwise [a 6= 0, b < 0] let D = b2 − 4ac.

4. If D < 0, the quadratic has no real solution. Fail.

5. Set r1 = (
√

D + |b|)/(2a).

6. Set r2 = c/(r1a).

7. Return r1, r2.

+ Question 1. Write this algorithm in Scheme and Standard ML.

September 20, 2013 1

Figure 1: UTF-16 encoding of Codes 0x10000 to 0x10FFFF
Suppose that the code point in binary is
v1 v2v3v4v5x0x1x2x3 x4x5x6x7 x8x9xAxB xCxDxExF . (where at least
one of the vs must be non-zero.) Let u = v − 1 where v is the number
whose binary representation is v1 v2v3v4v5. Then 0 ≤ u < 16 and can be
written in binary as u1 u2u3u4. The two 16-bit numbers representing this
code point are
1 0 1 1 1 0 u1 u2 u3 u4 x0 x1 x2 x3 x4 x5

1 0 1 1 1 1 x6 x7 x8 x9 xA xB xC xD xE xF

2 UTF-8 and Unicode

Unicode (or the Universal Character Set) contains information about most
of the world’s printed character. Each character has a number (often
referred to as its code point) between 0 and 0x10FFFF, which allows for
almost 17 × 216 possible characters (some of the slots are permanently
disallowed). The first 128 (0x00–0x3F) of these are identical to ASCII.

One method of storing Unicode character data is to allocate a 32-bit
word to each character. However, this tends to be space inefficient.

Another method is to use 16-bit words, representing each valid char-
acter in the range 0x0–0xFFFF as itself, and representing the characters
with codes larger than 0x10000 as a pair of 16-bit words. This is how
UTF-16 works, and is essentially what Java and parts of the Windows

TM

operating system do. See Figure 1 for details.
A third method is to represent each character as a sequence of 1 to 4

(8-bit) bytes, letting the ASCII characters stand for themselves, and using
a special encoding for characters with code points greater than or equal
to 128.

This is what UTF-8 does. Non-ASCII characters start with a sequence
of 1s equal to the number of bytes used, followed by a 0, followed by bits
of the actual code point. Subsequent bytes start with 10. (See Figures 2–5

for details.)

+ Question 2. Write a function to convert a list of integers (representing
UCS code points) to a list of values in the range 0–255 representing the
corresponding UTF-8 encoding.

September 20, 2013 2

0 x x x x x x x

Figure 2: UTF-8 encoding of ASCII

Encoding of uuuuxxxxxx2 (At least one of the us must be non-zero.)
1 1 0 u u u u x 1 0 x x x x x x

Figure 3: UTF-8 encoding of Codes 0x80 to 0x7FF

Encoding of uuuuxxxxxx2 (At least one of the us must be non-zero.)
1 1 1 0 u u u u
1 0 u x x x x x
1 0 x x x x x x

Figure 4: UTF-8 encoding of Codes 0x800 to 0xFFFF

Encoding of uuuuxxxxxx2 (At least one of the us must be non-zero.)
1 1 1 1 0 u u u
1 0 u u x x x x
1 0 x x x x x x
1 0 x x x x x x

Figure 5: UTF-8 encoding of Codes 0x10000 to 0x10FFF

September 20, 2013 3

