
UNBC cpsc 320 Syllabus Summary Fall 2021

Programming Languages
https://web.unbc.ca/~casper/Semesters/2021-05F/320.php

Accommodations:
If there is any student in this course who, because of a disability, may have a need for special aca-
demic accommodations, discuss this with me, or contact the Access Resource Centre located in Teach-
ing & Learning 10-1048.

Prerequisites: A C− or better in cpsc 242, and cpsc 200; or permission of instructor.

Who, Where, When?

Rooms Lectures are in 5-176

Hours 17:30–18:20 MWF
e-mail David.Casperson@unbc.ca

Instructor David Casperson
Office T&LC 10-2080

Telephone (250)960-6672

Text:
Required Programming Languages. by R.
W. Sebesta. (11/12)th Edition.

Grading and Dates:

First Class Wed, Sep 8

Thanksgiving Mon, Oct 11

Exam 1 25% Fri, Oct 15

last drop Thu, Oct 29

Remembrance day Thu, Nov 11

Exam 2 25% Mon, Nov 22

Language
Presentation

20% ???

Last Class Mon, Dec 06

Participaton 10%
Homework 20%

Why?
Programming Language popularity and availability changes constantly, and most program-
mers learn multiple languages and paradigms. This course introduces introduces general
ideas that underly programming languages and their design and description, giving a frame-
work for reasoning about, learning, and designing computer languages.

What? Topics chosen from (not necessarily in the order listed):

• Syntax: Lexical analysis — tokens, Concrete
syntax, Abstract syntax, Grammar descrip-
tions, (E)BNF, Ambiguity, derivation trees.

• Formal semantics: Operational, Axiomatic,
& Denotational Semantics. Small and big
step semantics.

• Common semantics: bindings, scope, envi-
ronments, allocation, lifetime. Lexical versus
dynamic binding.

• Calling mechanisms. Lazy evaluation. Call
by -value, -reference, -copy and return, -
name, -textual substitution.

• Tyeps and data types. Mathematical models.

Hindley-Milner type systems and Haskell.
Polymorphism. Type inference. Type equiv-
alence and type checking.

• Control Structures. Selection, looping, and
non-local flow. Procedures and Environ-
ments. Recursion. Parameter-passing mech-
anisms. Exception handling. Continuations.

• Programming in the large. Modules and
packages. Information hiding, data abstrac-
tion. Object-based and object-oriented pro-
gramming.

• Design principles. Simplicity, abstraction,
orthogonality, reliability,

Updated September 2021

