
UNBC cpsc 320 Syllabus Fall 2018

Programming Languages
Web-page: http://casper.unbc.ca/Semesters/2018/320.php

Prerequisites: A grade of C− or better in cpsc 242, and cpsc 200; or permission of instructor.

Accommodations: If there is any student in this course who, because of a disability, may have a need
for special academic accommodations, please come and discuss this with me, or contact the Access
Resource Centre located in Teaching & Learning 10-1048.

Who, Where, When?

Rooms Lectures are in 5-183

Labs are in 8-361

Hours 14:30–15:50 TR
Web page http://casper.unbc.ca/

e-mail David.Casperson@unbc.ca

Instructor David Casperson
Office T&LC 10-2080

Telephone (250)960-6672

Text: Recommended Programming Lan-
guages. by R. W. Sebesta. (10/11)th Edi-
tion. There is no required text.

Grading and Dates:
Participaton : : 10%
Homework : : 20%

Thanksgiving : Mon, Oct 08

Exam 1 : Thu, Oct 18 : 25%
last drop : Thu, Oct 25

Remembrance hol : Mon, Nov 12

Exam 2 : Tue, Nov 20 : 25%
Language

Presentation : ??? : 20%
Course eval. : Thu, Nov 22

last class : Thu, Nov 29

What? Topics chosen from (not necessarily in the order listed):

• Design principles. Simplicity, abstrac-
tion, orthogonality, reliability,

• Syntax: Lexical conventions and analysis
— tokens, concrete syntax, grammar de-
scriptions, derivation trees, abstract syn-
tax.

• Basic semantics: bindings, scope, en-
vironments, allocation, lifetime. Con-
stants, variables, and pointers. Aliases,
dangling references, and garbage.

• Formal semantics: Operational, Ax-
iomatic, & Denotational Semantics.

• Data Types. Simple Types. Mathematical
models. Type constructors and standard

non-simple types. Type equivalence and
type checking. Polymorphism.

• Control Structures. Selection, looping,
and non-local flow. Procedures and
Environments. Recursion. Parameter-
passing mechanisms. Exception han-
dling. Continuations.

• Programming in the large. Modules
and packages. Information hiding, data
abstraction. Object-based and object-
oriented programming.

• Programming Language Paradigms.
Object-Oriented, Functional and Logic
Programming. Mathematically-
modelled languages. Exotic languages.

Why? Language popularity and availability changes constantly over time, forcing most program-
mers to learn multiple languages and paradigms. This course introduces introduces general
ideas that underly programming languages and their design and description, giving a frame-
work for reasoning about, learning, and designing computer languages.

Updated September 4, 2018

