
CPSC320
Tutorial 6

Robert Pringle

November 22, 2007

Robert Pringle CPSC320



Exception Handling

I Generally exceptions are used when an unexpected and
possibly erroneous event occurs.

I Exceptions that occur as a direct result of actions that are
taken by the program are defined as synchronous exceptions
while those that occur as a result of something outside of the
program are refered to as asynchronous.

I When an exceptions is thrown or raised it is nesscary to find
an exception handler that can do something about the
exception. Searching for the appropriate exception handler is
done as follows:

I Look in the current block where the exception was raised.
I If there is no handler in the current block look at parents

blocks until we reach the block encompassing the scope of our
current function/procedure.

I If there is no handler within the function/procedure itself look
at block of the caller evaluating blocks from where
procedure/function was called. Perform the same steps for the
caller as for the local procedure (including looking at its caller).

I If we reach the entry point than we utilize a default exception
handler and usually exit the program.

Robert Pringle CPSC320



Exception Handling

I When an actual exception is thrown and the handler goes
through callers to determine an appropriate handler it is
usually nesscary to perform call or stack unwinding to provide
the appropriate environment for the procedure/function that
may contain the handler.

I After an exception has been handled it may be possible to
continue the execution of the program, where we continue
from depends on the exception handling mechanism.

I Resumption model of exception handling returns control just
after the point where exception occured and most often
required that the stack be restored to what it was at that
point.

I Termination model of exception handling returns control just
after the point where the exception was handled.

Robert Pringle CPSC320



Exception Handling Practice

For the following program show the contents of the stack,
excluding temporaries, before and just after the exception Error is
handled for an exception handler using the resumption and
termination models. Assume that Error is already defined.
int i=0;

void callTwo() {

if(i == 0)

throw new Error();

}

void callOne() {

try {

callTwo();

}

catch(Error err) {

cout << "Some sort of error occured." << endl;

}

}

int main() {

try {

callOne();

}

catch(...) {

cerr << "Default Handler: Exiting" << endl;

}

}

Robert Pringle CPSC320



Parameter Passing Methods

I There are a number of different ways to pass parameters to
procedures, these include:

I Pass by value where the actual parameter’s value is copied to
another memory space. The actual parameter is not affected.

I Pass by result where the value of the formal parameter is
copied back to the actual parameter when the procedure
returns.

I Pass by value-result where the actual parameter’s value is
copied to another memory space and copied back after the
procedure is finished.

I Pass by reference where the formal parameter refers the
memory location of the actual parameter.

I Pass by name, which used lexical substitution of the formal
parameter with the actual parameter and placement within the
caller’s body.

Robert Pringle CPSC320



Pass by name

I Pass by name is slightly different from the other parameter
passing methods in that an actual lexical substitution is used
for this method.

I Pass by name is performed by the following steps:
I Replace instances of the formal name parameter with the

actual parameter, surrounded in parenthesis in the case of an
expression, in the procedure body.

I Perform lexical substitutions for local variables that conflict
variables bound in the caller’s scope.

I Perform lexical substitutions so that free variable’s in the
procedure body are still valid even if a substitution occurs in
such a way that the particular variable is no visible once the
substitutions occurs.

I Place the modified body at the place where the procedure was
called.

Robert Pringle CPSC320



Parameter Passing Practice

Consider the following code and determine the resulting output for
pass by value, result, value-result, reference and name.

int g = 20;

void add(int b, int p) {

b = g;

p = b+g;

return;

}

int main(void) {

int g = 1, h=2, i=3;

add(h,i);

cout << h << i << endl;

return 0;

}

Robert Pringle CPSC320



Parameter Passing Practice

Consider the following code and determine the resulting output for
pass by value, result, value-result, reference and name for the
argument arr with the average function. Assume that the offset
function is pass by value and uninitialized integers will
automatically be set to zero.
int avg[4] = {1,2,3,0};

void average(int arr[],int offset) {

int index = 0,total = 0;

avg[offset] = 0;

while(arr[total++] > 0);

index = (--total)-1;

while(index >= 0) {

avg[offset] = avg[offset] + arr[index];

arr[index--] = 0;

}

avg[offset] = avg[offset] / total;

}

int main() {

average(avg,2);

for(int index=0; index < 3; index++)

cout << avg[index] << " ";

cout << endl;

}

Robert Pringle CPSC320


