
CPSC320
Tutorials

Robert Pringle

October 29, 2007

Robert Pringle CPSC320

Floyd-Hoare Logic

I Method used to prove things regarding programs such as the
correctness of the program.

I Floyd-Hoare logic statements have the form ` [P]C [Q] where
P is the precondition, C is the set of commands that make up
the program and Q is the postcondition.

Robert Pringle CPSC320

Partial and Complete Correctness

I Proofs can be to determine partial or complete correctness.
I Partial correctness is represented by encasing the precondition

and postconditions of a logic statement inside { } giving us a
statement of the form ` {P}C{Q}.

I For ` {P}C{Q} the postcondition only needs to hold if C
terminates, which is not guaranteed.

I Total correctness is represented by encasing the precondition
and postconditions of a logic statement inside [] giving us a
statement of the form ` [P]C [Q].

I For ` [P]C [Q] the termination of C is guaranteed for the if the
precondition P is satisfied.

Robert Pringle CPSC320

Floyd-Hoare Logic Axioms and Rules

I There are a number of axioms and rules that have been
previously proved and that can be used to build a correctness
proof.

I These include the assignment axiom, precondition
strengthening, postcondition weakening, specification
conjunction and disjunction, sequencing rule, derived
sequencing rule, block rule, derived block rule, conditional
rule, while rule and for rule.

Robert Pringle CPSC320

Floyd-Hoare Logic Proofs

I Usually all statements of your proof will be numbered so if a
rule or axiom needs to be applied between multiple statements
it will be obvious what statements you are referring to.

I As well as the number and the actual statement you need to
state what axiom or rule was used with which previous
statements to valid the current statement.

I A line usually divides the final statement of your proof or the
statement you have proved from the intermediate
statements/steps of the proof.

Robert Pringle CPSC320

Floyd-Hoare Logic Proof Example

Lets prove the following floyd-hoare statement:

` {even(X)}X := X + 1; X := X + 1{even(X)}

(1) ` even(X) ⇒ ¬even(X + 1) Math
(2) ` ¬even(X) ⇒ even(X + 1) Math

(3) ` {¬even(X + 1)}X := X + 1{¬even(X)} Assignment Axiom
(4) ` {even(X)}X := X + 1{¬even(X)} Precondition Strengthening 1,3

(5) ` {even(X + 1)}X := X + 1{even(X)} Assignment Axiom
(6) ` {¬even(X)}X := X + 1{even(X)} Precondition Strengthening 2,5

(7) ` {even(X)}X := X + 1; X := X + 1; {even(X)} Sequencing Rule with 4,6

Robert Pringle CPSC320

Floyd-Hoare Proof Practice

Prove the following statements using Floyd-Hoare logic.

1. ` {TRUE}
IF ¬even(X) THEN X := X + 1; ENDIF
{(XModulus2) = 0}

2. ` {even(X) ∧ odd(Y)}
X := X ∗ Y ; Y := X + Y ;
{odd(Y)}

3. ` {X = a ∧ Y = b ∧ N = 0}
WHILE X > 0 DO

BEGIN X := X − 1; N := N + Y ; END
{N = b ∗ a}

Robert Pringle CPSC320

Domain Equations

I Used to show the elements and mappings for a particular
variable or function domain.

I Combinations of elements within a given domain are often
represented by the cross product, ×, as the resulting domain
will contain such combinations.

I Mappings from on domain of elements to another is often
represented by →.

I Domains that contain elements of either one domain or
another are usually represented by the union of the two
domains +

Robert Pringle CPSC320

Domain Equation Example

Consider a C++ array, A, that contains C++ structures of type S.
Let the C++ integer domain be represented by I, the float domain
by F and the char domain by C and S be defined as:

struct {
float F1;
char C1;
union {

int I1;
char C2;
}
}

The domain equation for this would then be defined as:
A : I → F × C × (I + C)

Robert Pringle CPSC320

Domain Equation Practice

For each of the following questions we are given the domain of
integers, I, positive integers, Ip, strings, S, floats, F and booleans,
B. Write the domain equations for following entities:

1. A hash table with string keys and integer values.

2. An n-dimensional array of strings.

3. A hash table with string or integer keys and n-dimensional
arrays, hash tables, integers or strings for values.

4. The domain equation for the following structure:
struct {

float F1;
bool B1;
char C1;
union {

int I1;
char C2;
}
}

Robert Pringle CPSC320

Domain Equation Practice

For each of the following questions assume that the domain of
integers, I, strings, S, floats, F and booleans, B, are already
defined. Write the C++ structure corresponding to the following
domain equations:

1. I × B × C

2. F + B + I

3. F × B × I × (I + C + B)

4. F + B + (C × B × I)

Robert Pringle CPSC320

Type Equivalence

I Type equivalence is concerned with whether two types can be
considered the same or not.

I The two primary methods used to determine type equivalence
are structural equivalance, name equivalence and declaration
equivalence.

I In structural equivalence two types are considered the same if
they share the same structure.

I For user-defined types that utilize other non-simple types
structural equivalence can be determined by replacing a
typename with its structure though this becomes problematic
for recursive types.

I In name equivalence two types are considered the same only if
they share the same name.

I How name equivalence is applied to anonymous types is not
always clear and can be implementation dependant.

I Declaration equivalence is where types constructed from
another types (subrange, derived classes, etc.) are considered
equivalent to the base type.

Robert Pringle CPSC320

Type Equivalence Practice

Given the C floating point type, float, determine if the following
types could be considered equivalent to this simple type and if so
in which way would it be considered equivalent.

1. float fltarr[10];

2. typedef FPN float;

3. struct FPN { float f; }
4. struct { float f; } FPN;

5. union { float f; double d; }
6. float f;

Robert Pringle CPSC320

Type Equivalence Practice

Given the C structure struct STR { double d; float f; char c; }
give an analog structure that is.

1. Only structurally equivalent.

2. Declaritevly equivalent.

3. Name equivalent.

Robert Pringle CPSC320

