UNBC	CPSC 320		
stat	\rightarrow	if <i>bool_expr</i> then stat else stat	
		stat ; stat	
		variable := expr	
variable	\rightarrow	$\mathbf{x} \mid \mathbf{y} \mid \mathbf{z} \mid \mathbf{w} \mid \mathbf{u} \mid \mathbf{v}$	
expr	\rightarrow	expr + expr	
		expr – expr	
		expr * expr	
		variable	
		0 1	
relation	\rightarrow	< = >	
bool_expr	\rightarrow	expr relation expr	

Figure 1: Abstract grammar for Semantics Worksheet

Fall/2007

Homework Assignment #4

For the sake of concreteness in this assignment assume that we have the abstract grammar shown in Figure 1. Suppose also that the set of locations is given by $\mathcal{L} = \{\mathbf{x}, \mathbf{y}, \mathbf{z}, \mathbf{w}, \mathbf{u}, \mathbf{v}\}$, that the set of values that expressions can take is \mathbb{Z} . Let S_0 be the memory state $\mathcal{L} \times \{0\} = \{(\mathbf{x}, 0), (\mathbf{y}, 0), (\mathbf{z}, 0), (\mathbf{w}, 0), (\mathbf{u}, 0), (\mathbf{v}, 0)\}$.

1. Suppose that S_1 is the state $\{(x, 2), (w, 3), (z, 1), (y, 4), (u, 0), (v, 0)\}$, and that p is the program

x := y+1+1 ; y := 1+1+1+1+1 .

What is $\mathcal{C}[p](S_0)$? What is $\mathcal{C}[p](S_1)$?

2. Discuss the claim that for any statement p in our language, we can write

$$\begin{split} \mathcal{C}[p](s) &= s[\mathbf{x} \mapsto \phi_{\mathbf{x}}(s)][\mathbf{y} \mapsto \phi_{\mathbf{y}}(s)][\mathbf{z} \mapsto \phi_{\mathbf{z}}(s)]\\ & [\mathbf{w} \mapsto \phi_{\mathbf{w}}(s)][\mathbf{u} \mapsto \phi_{\mathbf{u}}(s)][\mathbf{v} \mapsto \phi_{\mathbf{v}}(s)] \end{split}$$

for suitable functions ϕ_{x} , ϕ_{y} , ϕ_{z} , , ϕ_{w} , ϕ_{u} , and ϕ_{v} .

- 3. Suppose that we extend the abstract syntax of statements so that we can write empty statements, for instance, ;;;x:=1+1;;. What should the meaning of the empty statement be?
- 4. Completely write out the formal denotational semantics for the programming language shown in Figure 1 using functions C, B, and \mathcal{E} , where the domains and co-domains are specified as follows:

function	domain	co-domain
\mathcal{C}	stat	$\mathcal{S}\mapsto \mathcal{S}$
${\mathcal E}$	expr	$\mathcal{S}\mapsto\mathbb{Z}$
${\mathcal B}$	$bool_expr$	$\mathcal{S}\mapsto \{T,F\}$

This assignment is due in class at the beginning of class 2007-10-23.