
UNBC CPSC 320 Fall/2007

stat → if bool expr then stat else stat
| stat ; stat
| variable := expr

variable → x | y | z | w | u | v
expr → expr + expr

| expr - expr
| expr * expr
| variable
| 0 | 1

relation → < | = | >
bool expr → expr relation expr

Figure 1: Abstract grammar for Semantics Worksheet

Homework Assignment #4

For the sake of concreteness in this assignment assume that we have the ab-
stract grammar shown in Figure 1. Suppose also that the set of locations is
given by L = {x, y, z, w, u, v}, that the set of values that expressions can take
is Z. Let S0 be the memory state L×{0} = {(x, 0), (y, 0), (z, 0), (w, 0), (u, 0), (v, 0)}.

1. Suppose that S1 is the state {(x, 2), (w, 3), (z, 1), (y, 4), (u, 0), (v, 0)},
and that p is the program

x := y+1+1 ; y := 1+1+1+1+1 .

What is C[[p]](S0)? What is C[[p]](S1)?

C[[p]](S0) = {(x, 2), (w, 0), (z, 0), (y, 3), (u, 0), (v, 0)}, (1)

C[[p]](S1) = {(x, 6), (w, 3), (z, 1), (y, 3), (u, 0), (v, 0)}. (2)

UNBC CPSC 320 Fall/2007

2. Discuss the claim that for any statement p in our language, we can
write

C[[p]](s) = s[x 7→ φx(s)][y 7→ φy(s)][z 7→ φz(s)]

[w 7→ φw(s)][u 7→ φu(s)][v 7→ φv(s)]

for suitable functions φx, φy, φz, , φw, φu, and φv.

All programs halt and never produce errors and always produce the
same result for a given state of memory, so C[[p]](s) = θ(s) for some
function θ. For a given state s, θ(s) has a value for each variable, so
we can define functions

φx(s) = θ(s)(x) φy(s) = θ(s)(y) φz(s) = θ(s)(z)

φw(s) = θ(s)(w) φu(s) = θ(s)(u) φv(s) = θ(s)(v)

It’s now just a matter of boring computation to show that these are
the right functions. For instance we have

C[[p]](s)(w) = s[x 7→ φx(s)][y 7→ φy(s)][z 7→ φz(s)]

[w 7→ φw(s)][u 7→ φu(s)][v 7→ φv(s)](w)

= s[x 7→ φx(s)][y 7→ φy(s)][z 7→ φz(s)]

[w 7→ φw(s)][u 7→ φu(s)](w) because w 6= v

= s[x 7→ φx(s)][y 7→ φy(s)][z 7→ φz(s)]

[w 7→ φw(s)](w) because w 6= u

= φw(s) because w = w

= θ(s)(w) by definition

3. Suppose that we extend the abstract syntax of statements so that we
can write empty statements, for instance, ;;;x:=1+1;;. What should
the meaning of the empty statement be? The meaning of a statement
should be a function from states to states that does nothing, that is
the identity function:

C[[;;]](S) = S. (3)

UNBC CPSC 320 Fall/2007

4. Completely write out the formal denotational semantics for the pro-
gramming language shown in Figure 1 using functions C, B, and E ,
where the domains and co-domains are specified as follows:

function domain co-domain

C stat S 7→ S
E expr S 7→ Z
B bool expr S 7→ {T,F}

In the following equations s1 and s2 are meta-syntactic variables that
range over statements (stat); e1 and e2 are meta-syntactic variables
that range over expresssions (expr); and v1 is a meta-syntactic variable
that ranges over {x, y, z, u, v} (variable). We let S stand for a memory
state, that is a function in Z{x,y,z,u,v}.

C[[if e1 then s1 else s2]](S) =

{
C[[s1]](S) if B[[e1]](S) = T

C[[s2]](S) if B[[e1]](S) = F
(4)

C[[s1;s2]] = C[[s2]] ◦ C[[s1]] (5)

C[[v1 := e1]](S) = S[v1 7→ E [[e1]](S)] (6)

E [[e1 + e2]](S) = E [[e1]](S) + E [[e2]](S) (7)

E [[e1 * e2]](S) = E [[e1]](S)× E [[e2]](S) (8)

E [[e1 - e2]](S) = E [[e1]](S)− E [[e2]](S) (9)

E [[v]](S) = S(v) (10)

E [[1]](S) = 1 (11)

E [[0]](S) = 0 (12)

B[[e1 < e2]](S) =

{
T if E [[e1]](S) < E [[e2]](S),

F otherwise
(13)

B[[e1 = e2]](S) =

{
T if E [[e1]](S) = E [[e2]](S),

F otherwise
(14)

B[[e1 > e2]](S) =

{
T if E [[e1]](S) > E [[e2]](S),

F otherwise
(15)

