
CPSC320 Class - October 25/07

Robert Pringle

October 24, 2007

Robert Pringle CPSC320 Class - October 25/07



Type Construction

I Type constructors are used by programming languages to
construct complex types out of simple types to create user
defined types.

I Type construction can be represented mathematically through
domain equations for the given type over the sets for the
types that where used to create a given user-defined type.

I This can include such things as cartesian products, union,
powersets, function mapping or subsets for subranges.

I It is possible (and likely) to have types whose domain
equations require a combination of the above operations.

Robert Pringle CPSC320 Class - October 25/07



Union

I The union operation is usually used to represent types that use
type discrimination, such as C unions or ADA variant records.

I The actual element associated with a particular instance of
this type can only be one of the type options in the structure
as result we use the union form a set of the possible values
resulting from the usage of this type.

Robert Pringle CPSC320 Class - October 25/07



Union Domain Equation Example

The C union type specified below is an example of a data type
whose domain equation would utilize unions. For the following we
will define the set of all integers as I, characters as C and floats as
F.

union Example {
int integer;
char character;
float floatingpoint;

}

For the given union type we have a domain equation
Example = I ∪ C ∪ F .

Robert Pringle CPSC320 Class - October 25/07



Subset

I The subset operation can be used to represent constructs that
can only handle some of the elements of the type they where
derived from.

I An example of this is subranges in ADA.

Robert Pringle CPSC320 Class - October 25/07



Subset Domain Equation Example

The ADA subrange given below is an example of a datatype whose
domain equation can utilize types. For the following we will define
the set of all integers as I.

subtype Example is integer range -10..10;

For the given subrange type we have a domain equation
Example = {iεI | − 10 ≤ i ≤ 10}

Robert Pringle CPSC320 Class - October 25/07



Function Mappings

I Function mappings can be used to represent any construct
that produces results/references from arguments.

I Actual functions that take arguments and produce a result or
hash maps that take a key and use it to retrieve values are
examples of constructs that can be represented by function
mapping.

I Arrays can also be represented by domain equations using
function mapping as they take an index (usually a integer) to
retrieve a value stored at that index.

I Arrays can be defined with a fixed size on the stack as in C or
dynamic sizes using dynamic allocation on the heap as in JAVA
or the stack as in ADA.

Robert Pringle CPSC320 Class - October 25/07



Mapping Domain Equation Example

The C floating point array specified below is an example of a data
type whose domain equation would utilize mapping. For the
following we will define the set of all integers as I and floats as F.

float Example[10];

For the above array we have the domain equation
Example = I → F . Note in this case we do not bound the range
for the integers that are used to index the array as you can
reference past the end of the array (though this is not
recommended).

Robert Pringle CPSC320 Class - October 25/07



Pointers and Recursive Types

I For pointers and recursive types we are also dealing with the
memory of the system in which the particular type is being
used and as such there is direct mathematical operation to
represent these.

I However it is possible to take a simplified view of the memory
and the recursive and represent them using the function
mapping we have previously seen.

I The full domain of a pointer would include the set of all
addresses that refer to the types compatible with the pointer
(those that can be dereferenced from the pointer).

I It is also possible to represent references, which are pointers
under the control of system rather than the programmer (such
as JAVA).

I Pointers can be used to define recursive types, types that use
themselves in their declaration.

Robert Pringle CPSC320 Class - October 25/07



Mixed Domain Equation Example

In order to show a structure that utilizing a mixture of operations
in its domain equation we will use a custom C structure used to
represent a tree node with nodes allocated dynamically through
pointers and leaves terminated with null children. For the following
we will define the set of all integers as I, characters as C and floats
as F.

struct Example {
int I;
union { char C; float F; } content;
Example* lchild, rchild;

}

The domain equation for the above user-defined type is
Example = I × (C ∪ F )× (Example × Example ∪ Example ∪ {ε}).

Robert Pringle CPSC320 Class - October 25/07



Type Equivalence

I Type equivalence is concerned with whether two types can be
considered the same or not.

I The two primary methods used to determine type equivalence
are structural equivalance, name equivalence and declaration
equivalence.

I In structural equivalence two types are considered the same if
they share the same structure.

I For user-defined types that utilize other non-simple types
structural equivalence can be determined by replacing a
typename with its structure though this becomes problematic
for recursive types.

I In name equivalence two types are considered the same only if
they share the same name.

I How name equivalence is applied to anonymous types is not
always clear and can be implementation dependant.

I Declaration equivalence is where types constructed from
another types (subrange, derived classes, etc.) are considered
equivalent to the base type.

Robert Pringle CPSC320 Class - October 25/07



Type Equivalence Example

Consider the two C structs below where the structure of the
undefined types TypeThree and TypeFour are considered
equivalent. These would be considered equal by structural
equivalence however they would not be considered equal by name
or declaration equivalence.

struct TypeOne { struct TypeTwo {
int I; int I;
double D; double D;
TypeThree type; TypeFour type;

} }

Robert Pringle CPSC320 Class - October 25/07



Type Equivalence Example

Consider the two C structs below where the structure of the
undefined types TypeThree and TypeFour are considered
equivalent. These would be considered equal by structural
equivalence however they would not be considered equal by name
or declaration equivalence.

struct TypeOne { struct TypeTwo {
int I; int I;
double D; double D;
TypeThree type; TypeFour type;

} }

Robert Pringle CPSC320 Class - October 25/07



Type Equivalence Example

Consider the two C typedefs below. Both of these typedefs would
be considered equivalent by structural equivalence however they
would not be considered the equivalent by name or declaration
equivalence. When comparing both types to float they both be
considered equivalent to floats by strutural and declaration
equivalence but not by name.

typedef float TypeOne;
typedef float TypeTwo;

Robert Pringle CPSC320 Class - October 25/07


