CPSC 320 Winter 2001 Midterm II—Wednesday, 14 February 2001

	ume(Prin Signa udentNur	iture :					
ACRE	AREA	BALE	BAND	BARD	BASS		
BETA	BIRD	BLOT	BOOK	BREW	CAMP	Question Sco	
CHIP	CLAN	COAT	COIL	CORN	CROW		/4
CURL	DARK	DEER	DOSE	DROP	DUCK		/4 /8
DUSK	FARE	FILM	FLAX	GAZE	GIFT		/3
GOLD	GULF	HINT	HORN	HULL	IBOU		/4
INCH	IRIS	ISLE	KERN	KILN	KITE	6	$\frac{1}{2}$
LANE	LARK	LENS	LOFT	LURE	MALT	7	/2
MANX	MESH	MINK	мотн	MOVE	MUSK	8	/2
NAVY	NEWT	NOON	OATS	OBOE	OPAL	9	/3
PARK	PINE	POET	RAFT	REED	RING	10	/2
RUBY	RUFF	SEAM	SEED	SHOP	SILK	11 ,	/9
SINE	SNIP	SOAP	STUB	TASK	TAXI	12	/7
TEAM	TELL	TEXT	TIDE	TILT	TOIL	Total /	50
TOME	TOUR	TURN	VANE	VISA	WALL		
WICK	WOLF	WRIT	YARD				

Instructions

- Write the word marked above on each page of questions of your exam. Do not put any other identifying marks on any page of your exam. Failure to put the circled word on a page of your exam may result in no marks being awarded for that page.
- Read each question carefully. Ask yourself what the point of the question is. Answer each question. Check to make sure that you have answered the question asked.
- Answer all questions on the exam sheet. If you do some of your work on the back of a page, clearly indicate to the marker what work corresponds with which question.
- This is a 50 minute exam. This exam contains 7 pages of questions not including this cover page. Make sure that you have all of them.
- Partial marks shall be awarded for clearly identified work.
- This exam counts as 20% of your total grade.

(2)

Identifier:

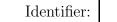
The Semantics of While loops

1. For brevity let f = C[while c do p endwhile]. We derived that f must satisfy the equation

$$f(\sigma) = \begin{cases} \left(f \diamond \mathcal{C}\llbracket p \rrbracket \right)(\sigma) & \text{if } \mathcal{E}\llbracket c \rrbracket(\sigma) > 0 \\ \sigma & \text{otherwise} \end{cases}$$
(1)

(a) Explain roughly how we got the right hand side of (1).

(2) (b) Equation (1) sometimes has more than one solution. What relation does the correct solution have to other solutions?


- (1) **2.** (a) What does \perp symbolize?
- (1) (b) We used to use $C[s_1; s_2] = C[s_2] \circ C[s_1]$. With while-loops in our language we must write $C[s_1; s_2] = C[s_2] \diamond C[s_1]$. What is new in our model of the execution of s_1 that means that ordinary function composition is not appropriate here?
- (2) (c) Assuming that f and g are functions from S to S_{\perp} , give the definition

of $[f \diamond g](\sigma)$.

(8)

3. Match the following programs with their denotations. Note that we are assuming a language where a real number r is considered to be true as a boolean value if r > 0.

UNBC

Data types

- (1) **4.** (a) What do we mean by a *first-class* value?
- (2)(b) Give an example of a language, and a kind of value in that language that is not first-class, and the evidence you have for the fact that it is not first-class.

- 5. Louden gives **Definition 1.** A data type is a set of values. as his first definition of data type.
- (2) (a) Why is this definition too broad?
- (2) (b) How can it be made more precise?

(2) **6.** (Circle the best choice.) The C^{++} type

struct T1 { double z ; int w[2] ; } ;

considered as a set most closely corresponds to

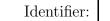
- (a) $\mathbb{R} \times \mathbb{Z}^2$
- (b) $\mathbb{R} \cup \mathbb{Z}^2$
- (c) $\mathbb{R} \to \mathbb{Z}^2$
- (d) T1 considered as a set in no way corresponds to any of the above.

UNBC

(2) 7. What are some properties that help define a character type, or distinguish one character type from another?

(2) 8. Many Object-Oriented programming languages don't have explicit subset type constructors, yet they allow one to model that type Y is a subset of type X. What is the connection between subsets and object orientation?

True or False


- Circle **TRUE** or **FALSE** as appropriate. Questions that don't clearly indicate *one* choice shall be marked wrong.
 - (a) PASCAL has a explicit powerset type constructor. **TRUE FALSE**
 - (b) C++ has an explicit subset type constructor. TRUE FALSE
 - (c) Union types often have a syntactically attached tag or discriminator. **TRUE FALSE**

 - (e) In PASCAL strong-typing is weakened somewhat by the ability of a programmer to arbitrarily manipulate the value of the tag in a record variant. **TRUE FALSE**
 - (f) In ADA strong-typing is weakened somewhat by the ability of a programmer to arbitrarily manipulate the value of the tag in a record variant. **TRUE FALSE**
 - (g) Pointers are a form of set-theoretic type constructor.

TRUE FALSE

(1)

(1)

Type equivalence

11. In Standard ML the datatype keyword introduces a new (union-like) type. For instance, in lecture, I gave an example something like

> datatype number = R of real | I of Int ; fun n2real (R r) = r | n2real (I i) = Real.fromInt i ;

If we next define another data type by

```
datatype number2 = R of real | I of Int ;
```

and try computing n2real (I 5), we'll get a type mismatch because Standard ML considers (I 5) to be of type number2 and doesn't consider number and number2 to be equivalent types.

- (a) In this case, what form of type equivalence is Standard ML *not* using in comparing number and number2?
- (b) Standard ML has another sytax for datatype statements that looks like

```
datatype number3 = datatype number ;
```

After such a declaration, values of type number3 can be used where values of type number are expected. In this case, what form of type equivalence is Standard ML *not* using in comparing number and number3?

Identifier:

Type inference

12. The function

```
ostream&
print_hex_digit(ostream& out, int n)
{
    return
        (n>9)
        ? out << "ABCDEF"[n-10]
        : out << n ;
}</pre>
```

prints 'A' when called with print_hex_digit(cout, 10).

On the other hand, the function

```
ostream&
print_hexed_digit(ostream& out, int n)
{
    return
    out << ((n>9) ? "ABCDEF"[n-10] : n);
}
```

prints '65' when called with print_hexed_digit(cout, 10).

The following questions relate to explaining why this happens in terms of how C^{++} performs type inference and its willingness to perform implicit casts.

(a) Draw a parse tree or abstract syntax tree of the expression following return in print_hexed_digit.

(2)

(2)

(b) Explain in general terms how C⁺⁺ infers the types of the expressions.

(2) (c) Label the nodes of the tree from 0a with the types that compiler infers.

UNBC

(1)(d) What implicit cast is inserted?

(2)(e) Briefly explain why the first version works.