
CPSC 320 Winter 2001
Midterm I—Wednesday, 7 February 2001

Name(Printed) :

Signature :

StudentNumber :

ACRE AREA BALE BAND BARD BASS

BETA BIRD BLOT BOOK BREW CAMP

CHIP CLAN COAT COIL CORN CROW

CURL DARK DEER DOSE DROP DUCK

DUSK FARE FILM FLAX GAZE GIFT

GOLD GULF HINT HORN HULL IBOU

INCH IRIS ISLE KERN KILN KITE

LANE LARK LENS LOFT LURE MALT

MANX MESH MINK MOTH MOVE MUSK

NAVY NEWT NOON OATS OBOE OPAL

PARK PINE POET RAFT REED RING

RUBY RUFF SEAM SEED SHOP SILK

SINE SNIP SOAP STUB TASK TAXI

TEAM TELL TEXT TIDE TILT TOIL

TOME TOUR TURN VANE VISA WALL

WICK WOLF WRIT YARD

Question Score
1 /3
2 /3
3 /2
4 /7
5 /7
6 /3
7 /3
8 /2
9 /2

10 /5
11 /3
12 /3
13 /4
14 /3

Total /50

Instructions

• Write the word marked above on each page of questions of your exam.
Do not put any other identifying marks on any page of your exam.
Failure to put the circled word on a page of your exam may result in
no marks being awarded for that page.

• Read each question carefully. Ask yourself what the point of the question

is. Answer each question. Check to make sure that you have answered

the question asked.

• Answer all questions on the exam sheet. If you do some of your work
on the back of a page, clearly indicate to the marker what work corre-
sponds with which question.

• This is a 50 minute exam. This exam contains 7 pages of questions
not including this cover page. Make sure that you have all of them.

• Partial marks shall be awarded for clearly identified work.

• This exam counts as 20% of your total grade.

UNBC CPSC 320 Identifier:

Programming Language Principles

(3) 1. In C and C++ macro-expansion occurs after comment and blank removal,
but early in the parsing process. Comment on how C-style macro expansion
affects the writeability and reliability of C and C++ code.

Syntax

(3) 2. In C++ “list<list<int>>” results in a syntax error because of how >> is
parsed. Explain what goes wrong, and how this relates to how language
parsing works in general.

(2) 3. C++, like most modern computer languages, is primarily free-form. What
features, if any, are not free-form?

4. One common form of ambiguity relates to the precedence of operators in
expressions. Consider the expression

x × y + z × w (1)

Wednesday, 7 February 2001

Midterm I
page 1 of 7

UNBC CPSC 320 Identifier:

(2) (a) Given the grammar

〈expr〉 ::= 〈expr〉 + 〈expr〉 | 〈expr〉 × 〈expr〉
| 〈variable〉

〈variable〉 ::= w | x | y | z

show two different ways to parse (1) as an 〈expr〉.

(b) Given the (unusual!) grammar(3)

〈expr〉 ::= 〈term〉 × 〈expr〉 | 〈term〉

〈term〉 ::= 〈term〉 + 〈variable〉 | 〈variable〉

〈variable〉 ::= w | x | y | z

what parsings of expression (1) as an 〈expr〉 are possible?

(c) What does it mean for a grammar to be unambiguous?(2)

Wednesday, 7 February 2001

Midterm I
page 2 of 7

UNBC CPSC 320 Identifier:

5. This question is about the rôle of context-free grammars in modern program-
ming languages.

(2) (a) What is a context-free grammar?

(b) Most programming languages are nearly, but not entirely, context-free.(2)
What makes most of them non context-free?

(c) What small modifications allow an essentially context-free parser to be(2)
used with most programming languages?

(d) Is the language for which we defined a formal semantic model context-(1)
free?1

(3) 6. Explain some of the principal ways that the grammar of Fortran differs
from that of most modern computer languages.

Formal Denotational Semantics

(3) 7. Let p stand for the program “x:=y+3.0; y:= 2.0; z:=x-y .”; then:

(a) C[[p]] = C[[x:=y+3.0]] ◦ C[[y:= 2.0]] ◦ C[[z:=x-y]].

(b) C[[p]] = C[[z:=x-y]] ◦ C[[y:= 2.0]] ◦ C[[x:=y+3.0]].

(c) none of the above.

Briefly justify your answer.

1In fact, I never entirely specified the actual grammar. Given a likely grammar for the
language, is it context-free?

Wednesday, 7 February 2001

Midterm I
page 3 of 7

UNBC CPSC 320 Identifier:

(2) 8. When we added semantics for expressions we gave the rule

E [[r]](s) = ι(r) where r is a floating point literal (2)

(a) What is the point of the function ι?

(b) Why does the state s appear on the left hand side of (2)?

(2) 9. Give an equation defining E [[e1 + e2]], where e1 and e2 are meta-syntactic
variables standing for arbitrary expressions.

Informal Semantics

10. Some of the following questions are about the notion of binding.

(2) (a) To what, in general, does binding refer?

Wednesday, 7 February 2001

Midterm I
page 4 of 7

UNBC CPSC 320 Identifier:

(b) Binding times may be either static or dynamic. What are some further(2)
subdivisions of static binding times suggested in the book?

(c) What features in C++ use dynamic binding?(1)

(3) 11. In C++ functions may be templated on their arguments. For instance, in the
code

1 template<class Q>

2 void swap(Q& q1, Q& q2) { Q& q_temp(q1) ; q1 = q2; q2 = q_temp;}

3

4 int main()

5 {

6 int i1, i2; double d1, d2;

7 swap(i1, i2);

8 swap(d1, d2); return 0;

9 }

the function swap on line 8 is bound to swap<int>, and the function swap on
line 9 is bound to swap<double>. Describe as specifically as possible when
the name of a templated function is bound to its instance.

(2) 12. (a) What does strict or applicative evaluation order of expressions mean?

Wednesday, 7 February 2001

Midterm I
page 5 of 7

UNBC CPSC 320 Identifier:

1 #include <iostream>

2 using namespace std ;

3 int x = 3, y=4 ;

4 void h()

5 {

6 char z[] = "6" ;

7 cout << x << ", " << y << ", " << z << endl ;

8 return ;

9 }

10 void g() { int y = x; h(); return; }

11 int main() { int x = 2+y++; g(); return 0; }

Figure 1: Code for Question 13.

(b) Can short-circuit operators (such as ‘&&’ in C++ or ‘and also’ in Ada(1)
and ML) be simulated by functions with strict evaluation rules?

13. Given the C++-like code shown in Figure 1:

(2) (a) what would be printed in a language that uses static scoping? Explain.

(b) what would be printed in a language that uses dynamic scoping? Ex-(2)
plain.

Wednesday, 7 February 2001

Midterm I
page 6 of 7

UNBC CPSC 320 Identifier:

1 int f(bool flag=false)

2 {

3 static int n = 0 ;

4 if (flag) n = 0 ;

5 return ++n ;

6 }

7

8 int g(int,int,int x) { return x ; }

Figure 2: Code for Question 14

14. The following question is about the order of evaluation in C++. Assume
that we have the functions f and g defined as shown in Figure 2 (page 7)

(1) (a) Explain why

cout << (f(true),f(false),f(false)) << endl

is well-defined.

(b) Explain why(2)

cout << g(f(true),f(false),f(false)) << endl

is not well-defined.

Wednesday, 7 February 2001

Midterm I
page 7 of 7

