
UNBC Laboratory Assignment
Computer Science 200—Winter 2024

Better Big Integer Parsing

Objectives:

The java.math.BigInteger(String ...) constructor is inefficient. The objectives
of this laboratory exercise are two-fold:

1. Document the current behavior.

2. Write an algorithm that is both practically and asymptotically faster than the
Java 10 library code.

Due Date:

This assignment is due Friday, 2024-03-15 by the beginning of lecture.

The Current Behaviour

⇒ Write a program that demonstrates that the current Java library code for java.math.

BigInteger(String ...) exhibits Θ(n2) runtime time. (On my laptop1, constructing
a BigInteger from a 106-digit string takes about 12 s, and using equally spaced x-
values with increment 105 plots nicely. You may need to experiment to find the best
values for your computational environment.)

⇒ Plot your data.

⇒ Describe a simple algorithm to implement java.math.BigInteger(String ...) that
takes quadratic time.

Do you expect that this is what your Java provider uses?

Divide and Conquer

We’ve seen this situation before with sorting algorithms. We have an algorithm with
Θ(n2) behaviour. If we can split the problem into two sub-pieces, instead of taking cn2

1
2019 Mac Pro with 64 G memory running Mac OS 12.7.3, and using openjdk 19.0.2 2023-01-17.

© 2022–2024 David Casperson. May be copied
for legitimate CPSC 200 2024 purposes only. All

rights resevered.

UNBC CPSC 200

time, we take 2c(n/2)2 = cn2/2 time, or a saving of 50%. However, we then need to
be able to recombine the pieces. If we can recombine in o(n2) time, we have a saving.
In that case, when we apply this strategy recursively, we end up with a reduction in
complexity (as we saw with mergesort and quicksort).

Let’s see what happens in the context of converting a String to a BigInteger.

Suppose that we have a String s and we split it into two pieces s1 and s2 of approx-
imately equal size so that s.equals(s1+s2). Then, after

1 BigInteger d = new BigInteger(s) ;

2

3 BigInteger d1 = new BigInteger(s1) ;

4 BigInteger d2 = new BigInteger(s2) ;

5

6 BigInteger d3 = d2.add(

7 d1.multiply(

8 BigInteger.TEN.pow(s2.length()))) ;

d and d3 should be the same number. For instance, if

1 String s = "123456" ;

2 String s1 = "123" ;

3 String s2 = "456" ;

then d = 123456, d1 = 123, d2 = 456, and d3 = 456 + 103 · 123. The time to compute d3

consists of

1. the time to compute d1

2. the time to compute d2

3. the time to compute B = 10|s2|

4. the time to multiply d1 and B
5. the time to add d2 and B · d1.

Assuming that s1 and s2 are close to the same length, we get from Lab 1 that

4’. the time to multiply d1 and B is Θ(length(s1)
1.6).

5’. the time to add d2 and B · d1 is Θ(length(s1)).

Assuming that we can avoid the cost of computing B, we get a running time equation

T(n) = 2T(n/2) + c · (n/2)1.6, (1)

which gives T(n) = Θ(n1.6). (2)

This is our strategy then. Use “divide-and-conquer” to split our problem into half-size
pieces, and then use the fact that BigInteger has reasonably fast multiplication to re-
combine the pieces.

Laboratory Assignment Better Big Integer Parsing • 2

UNBC CPSC 200

Base cases

Our strategy is recursive. What, then, are our base cases? We know that Java can read
an ordinary integer quickly, and this suggests that our base case be digit strings with 9
or less digits.

Reducing the cost of computing 10k

In order to the reduce the number of powers of 10 that we compute, we can use the fol-
lowing principle:

Whenever we split a string into two sub-problems, the right-hand substring will
have a length 9 · 2k.

This means that we only ever need to compute powers of 10 of the form 109·2k
. Also

note that

109·2k+1
= 109·2·2k

= (109·2k
)2, (3)

meaning that all of the powers can be produced by squaring.

Memo-ization

We can also use the following trick: Keep a java.util.Map of previously computed
powers. The clean way to code this is to provide a method, say tenToThe9xTwoToThe

that does the actual computation, and have it consult a map that keeps previously
computed answers. Sample code is shown in Figure 1.

• Lines 2–3 and 7–8 set up the map. (Map is an interface, TreeMap is a concrete (but
generic) class.)

• Line 29 shows how to get a value from the map. Note that we only ever return
values that are stored in the map, so that we know that each value is computed
only once.

• Line 27 shows how to store an answer in the map.
• Line 14 shows how to check if the map has an answer for k. If so, we skip to line

29 and return it. Otherwise, we compute and store the answer first.
• Lines 20 and 24–25 do the actual computation. Note that these lines are “pure”

formulas. That is, they would work whether or not we remembered the answer.

This pattern is worth learning, as it often works, and is the basis of a technique called
dynamic programming.

Laboratory Assignment Better Big Integer Parsing • 3

UNBC CPSC 200

1 import java.Math.BigInteger ;

2 import java.util.Map;

3 import java.util.TreeMap ;

4

5 class Helper

6 {

7 private static java.util.Map<Integer,BigInteger> stash =

8 new java.util.TreeMap<Integer,BigInteger> ();

9

10

11 public static BigInteger tenToThe9xTwoToThe(int k)

12 {

13 if (k<0) throw IllegalArgumentException("Positive powers only") ;

14 if (! stash.containsKey(k))

15 {

16 BigInteger answer ;

17 if (k==0)

18 {

19 // base case

20 answer = BigInteger.TEN.pow(9) ;

21 }

22 else

23 {

24 BigInteger temp = tenToThe9xTwoToThe(k-1) ;

25 answer = temp.multiply(temp) ;

26 }

27 stash.put(k,answer) ;

28 }

29 return stash.get(k) ;

30 }

31 }

Figure 1: Memoizing the powers of 10

Laboratory Assignment Better Big Integer Parsing • 4

UNBC CPSC 200

Here, then, is a sketch of an algorithm for creating a BigInteger from a String.

An Approximate Algorithm

1. Set n to the length of the string to be converted.
2. If n < 10, use the builtin BigInteger constructor. (base)

Otherwise:
3. Find a value of k so that n/3 ≤ 9 · 2k < 2n/3.
4. Set n2 = 9 · 2k and n1 = n− n2 and B = 10n2 .
5. Read the first n1 digits into a BigInteger d1. (recursive)
6. Read the last n2 digits into a BigInteger d2. (recursive)
7. Return the value of the whole string: which is d2 + B · d1.

Implementation notes

• Although it doesn’t affect the asymptotic time efficiency, splitting a really big
String into two pieces using String.substring is inefficient in both time and
space.

It is more efficient to have a recursive algorithm with signature
public BigInteger parseBig(String, int start, int length) { ... }

where start and length describe the substring to convert.

• For step 3, a simple loop on k suffices. Alternatively, k = dlog2 n− log2 27e.

• For step 4, compute B using the function tenToThe9xTwoTo~The(k).

• For step 6, the recursive calls will use a value of k equal to the current value of k
minus one [1

2 (9 · 2k) = 9 · 2k−1]. Using yet another method
public BigInteger parseBig(String, int start, int length, int k) { ... }

will allow you to avoid recomputing k, alhtough this is a tiny improvement.

Laboratory Assignment Better Big Integer Parsing • 5

UNBC CPSC 200

Testing

To help you test your program, a file test-data.txt.zip is supplied with the lab.
Unzip this file. test-data.txt contains one line that conatain a million digit number.

The number in the file is exactly divisble by 37, multiple times. Report the nhmber of
times 37 divides evenly, and the remainder when it doesn’t. For intance

The result shoud be

For n equal devides exactly and then has
39 0 times remainder 2

40 · 372 = 53391 2 times remainder 3

Coding & Hand In

⇒ Complete the three ⇒ points under “The Current Behaviour, namely

• Write a program that demonstrates that the Java library code for java.math.

BigInteger(String ...) has Θ(n2) behaviour.
• Plot your data.
• In code comments, make a guess as what algorithm Oracle uses.

⇒ Hand in Java code for your tests, the numerical output from your tests, and a graphics
file with your plot.

⇒ Code, test, and time the algorithm described at the top of page 5.

⇒ Again, hand in Java code for your tests, the numerical output from your tests, and
a graphics file with your plot.

⇒ Test the correctness of your program by using the test-data.txt.zip file as de-
scribed on the preceding page.

⇒ In your code comments for the memoization of tenToThe9xTwoTo~The, describe how
many entries you expect to find in the map. If you want a more precise question, how
many entries would you have in the map if you read a billion digit string?

Laboratory Assignment Better Big Integer Parsing • 6

