
UNBC Laboratory Assignment
Computer Science 200—Winter 2024

Utility Algorithms

Goals:

The goals of this laboratory exercise are three-fold:

• To practise using loop-invariants.

• To better understand the partition algorithm.

Due Date:

This assignment is due Monday, 05 February by the beginning of class.

Utilities

Your goal for this part of the assignment is to write a Utilities class that contains several
small algorithms for working with a generic array. The interface is shown in Figure 1 on the fol-
lowing page.

With the exception of the swap method, each of these algorithms contains one or more loops.
Write your code to contain a comment that describes the loop invariant, as shown in the sample
shuffle algorithm.

There are four isSorted algorithms for determining if a section [`, r) of an array data

is sorted with respect to a comparator c . If [`, r) is not supplied, it should be taken
to be [0, data.length). If the comparator c is not supplied, it should be taken to be
Comparator.naturalOrder() . Three of these algorithms should just call a different flavour
of the algorithm. The fourth should document its loop invariant(s).

Finally, there is a partition algorithm. The intent is as follows: after executing

int m = partition(data, ell, arr, p);

the following should be true:

1. for i ∈ [0, `), data[i] should be unchanged.
2. for i ∈ [`, m), p.test(data[i]) should be false.
3. for i ∈ [m, r), p.test(data[i]) should be true.
4. for i ∈ [r, n), data[i] should be unchanged.

where ` = ell, r = arr, and n = data.length.

⇒ Explain why this partition algorithm is slightly different from the quick sort partition al-
gorithm.

© 1994–2022 David Casperson. This document may
be freely copied, provided that this copyright notice is

preserved.

UNBC CPSC 200

⇒ Submit your Utilities.java file via Moodle.

Laboratory Assignment Utility Algorithms • 2

UNBC CPSC 200

import java.util.function.Predicate ; 1

import java.util.Comparator ; 2

3

public class Utilities 4

{ 5

// a classic 6

public static <E> void swap(E [] data, int i, int j) {...} 7

8

// tests for sortedness 9

public static <E extends Comparable<? super E>> 10

boolean isSorted(E [] data) {...} 11

12

public static <E extends Comparable<? super E>> 13

boolean isSorted(E [] data, int i, int j) {...} 14

15

public static <E> 16

boolean isSorted(E [] data, int i, int j, Comparator<? super E> c) 17

{...} 18

19

public static <E> 20

boolean isSorted(E [] data, Comparator<? super E> c) {...} 21

22

23

// a general purpose partition algorithm 24

public static <E> 25

int partition(E [] data, int ell, int arr, Predicate<E> p) {...} 26

27

// a sample algorithm, with loop invariant 28

public static <E> void shuffle(java.util.Random rnd, E [] data) 29

{ 30

final int n = data.length ; 31

for(int i=n;i>1;--i) 32

{ 33

// Loop Invariant: 34

// The n-i rightmost elements are randomly selected 35

// with equal probabilities from the initial array. 36

// The range [0,i) contains the remaining elements. 37

// 38

// [???)[rand) 39

// 0 i n 40

swap(data,i-1,rnd.nextInt(i)) ; 41

} 42

} 43

} 44

Figure 1: Utilities class declaration

Laboratory Assignment Utility Algorithms • 3

