Chapter 2 Practice Questions

Due Date:

This assignment is due through by Monday, 2024-01-22 by the beginning of class.

From Chapter 2 of Weiss

Submit complete solutions of the following problems through learn.unbc.ca.

• Do Problem 2.1

Order the following functions by growth rate: n, \sqrt{n} , $n^{1.5}$, n^2 , $n \log n$, $n \log(\log n)$, $n (\log n)^2$, $n \log(n^2)$, 2/n, 2^n , $2^{n/2}$, 37, $n^2 \log n$, n^3 . (Functions slightly rewritten from text for clarity)

• Do Problem 2.11

An algorithm takes 0.5 ms for input size 100. How long will it take for input size 500 if the running time is the following (assume low-order terms are neglible)?

- a. linear
- b. $\Theta(n \log n)$ (Weiss says $O(n \log n)$, but he means $\Theta(n \log n)$. See my September 13 lecture notes on big O.)
- c. quadratic
- d. cubic
- Do Problem 2.12

An algorithm takes 0.5 ms for input size 100. How large a problem can be solved in 60 s if the running time is the following (assume low-order terms are neglible)?

- a. linear
- b. $\Theta(n \log n)$ (you'll need to guestimate.)

UNBC CPSC 200

- c. quadratic
- d. cubic

• Do Problem 2.25

Programs A and B are analysed and found to have worst-case running times that are no graater than $150n \log n$ and n^2 respectively. Answer the following questions if possible:

- a. Which program has the better guarantee on running times for large values of n > 10000?
- b. Which program has the better guarantee on running times for small values of n < 100?
- c. Which program will run faster *on average* for n = 1000?
- d. Is it possible that Program B will run faster than Program A on all possible inputs?