Symbol	"Think"	Value of L^{\dagger}	Formal Meaning [‡]
0	"<"	L = 0	$f(n) \in \mathcal{O}(g(n))$ but not $f(n) \in \Omega(g(n))$
0	"≤"	$L < \infty$	$\exists c, n_0 [\forall n \ge n_0 [f(n) \le cg(n)]]$
Ω	"≥"	L > 0	$\exists c, n_0 [c \neq 0 \ \& \ \forall n \geq n_0 [f(n) \geq cg(n)]]$
Θ	"=".	$0 < L < \infty$	$f(n) \in \mathcal{O}(g(n))$ and also $f(n) \in \Omega(g(n))$

†Value of $L = \lim_{n \to \infty} f(n)/g(n)$ when it exists.

 \ddagger Formal meaning of $f(n) = _(g(n))$.

Figure 1: Greek Notation

Asymptotic Formulæ

$$f(n) \in o(g(n))$$
 (old style $f(n) = o(g(n))$)

Said: f(n) is little Oh of g(n)Casual: f is strictly smaller (faster) than g. Definition: $f(n) \in O(g(n))$ but not $f(n) \in \Omega(g(n))$ Calculus: $\lim_{n \to \infty} f(n)/g(n) = 0$ if the limit exists.

 $f(n) \in \mathcal{O}(g(n))$ (old style $f(n) = \mathcal{O}(g(n))$)

Said: f(n) is big Oh of g(n)Casual: f is smaller (faster) than or equal to g. Informal: f is eventually smaller than g (up to a constant). Definition: $\exists c, n_0 \text{ such that } \forall n \ge n_0 \quad f(n) \le cg(n)$ Calculus: $\lim_{n \to \infty} f(n)/g(n) < \infty$ if the limit exists.

 $f(n) \in \Omega(g(n))$ (old style $f(n) = \Omega(g(n))$)

Said: f(n) is big Omega of g(n)Casual: f is greater (slower) than or equal to g. Informal: f is eventually greater than g (up to a constant). Definition: $\exists c \neq 0, n_0 \text{ such that } \forall n \geq n_0 \quad f(n) \geq cg(n)$ Calculus: $\lim_{n \to \infty} f(n)/g(n) > 0$ if the limit exists.

 $f(n) \in \Theta(g(n))$ (old style $f(n) = \Theta(g(n))$)

Said: f(n) is big Theta of g(n)Casual: f is approximately the same as g. Definition: $f(n) \in O(g(n))$ and also $f(n) \in \Omega(g(n))$ Calculus: $\lim_{n \to \infty} f(n)/g(n) \in (0, \infty)$ if the limit exists. Usage the symbols O, o, Ω , and Θ are *not* function symbols. Formally $\Omega(h)$) is a class of functions. Used "old style" they should only be used "at the top level" on the right hand side of an equation. Always use parentheses after these symbols.

Generic $\Theta(f(n))$ formulæ.

- If $f(n) = c \cdot g(n)$ then $f(n) \in \Theta(g(n))$. Constants don't matter.
- If $f(n) = a_0 + a_1n + a_2n^2 + \dots + a_{k-1}n^{k-1} + a_kn^k$, where $a_k \neq 0$, then $f(n) \in \Theta(n^k)$. Don't sweat the small stuff (polynomials).
- If $g(n) \in o(f(n))$ then $f(n) + g(n) \in \Theta(f(n))$. Don't sweat the small stuff (general).
- $f(n) + g(n) \in \Theta(\max(f(n), g(n)))$. [This one comes up over and over in algorithm analysis.]
- If $f(n) \in \Theta((\log n))$ and $g(n) \in \Theta(n^{\epsilon})$ (where $\epsilon > 0$) then $f(n) \in o(g(n))$. Logarithms are smaller than polynomials.
- If $f(n) \in \Theta(n^k)$ and $g(n) \in \Theta(c^n)$, where c > 1, then $f(n) \in o(g(n))$. Polynomials are smaller than exponential functions.

Logarithms.

- If $f(n) \to +\infty$ and $g(n) \to +\infty$ and $f(n) \in \Theta(g(n))$ then $\log f(n) \in \Theta(\log g(n))$. (N.B. the converse does not hold!) logs preserve Θ .
- [Charlie's Rule] If $f(n) \to +\infty$ and $g(n) \to +\infty$ and $\lim_{n\to\infty} \frac{\log f(n)}{\log g(n)} < 1$ then $f(n) \in o(g(n))$.¹ This rule helps a lot in dealing with odd functions like $n^{1/(\log \log n)}$.
- $\log_a n \in \Theta(\log_b n)$. The base doesn't matter.

Factorials.

Stirling's formula $n! = \sqrt{2\pi n} \left(\frac{n}{e}\right)^n \left(1 + \frac{1}{12n} + \frac{1}{288n^2} + g(n)\right)$ where $g(n) \in o(n^{-2})$. Consequently $\log n! = \Theta(n \log n)$.

 $^{^1\}mathrm{I}$ know about this nice result from Charlie Obimbo, who presented it at WCCCE '03.