Symbol	"Think"	Value of L^{\dagger}	Formal Meaning ${ }^{\ddagger}$
$\mathbf{0}$	$"<"$	$L=0$	$f(n) \in \mathrm{O}(g(n))$ but not $f(n) \in \Omega(g(n))$
\mathbf{O}	$" \leq "$	$L<\infty$	$\exists c, n_{0}\left[\forall n \geq n_{0}[f(n) \leq c g(n)]\right]$
$\boldsymbol{\Omega}$	$" \geq "$	$L>0$	$\exists c, n_{0}\left[c \neq 0 \& \forall n \geq n_{0}[f(n) \geq c g(n)]\right]$
$\boldsymbol{\Theta}$	$"="$.	$0<L<\infty$	$f(n) \in \mathrm{O}(g(n))$ and also $f(n) \in \Omega(g(n))$

\dagger Value of $L=\lim _{n \rightarrow \infty} f(n) / g(n)$ when it exists.
\ddagger Formal meaning of $f(n)=_(g(n))$.
Figure 1: Greek Notation

Asymptotic Formulæ

$f(n) \in \mathrm{o}(g(n))($ old style $f(n)=\mathrm{o}(g(n)))$
Said: $f(n)$ is little Oh of $g(n)$
Casual: f is strictly smaller (faster) than g.
Definition: $f(n) \in \mathrm{O}(g(n))$ but not $f(n) \in \Omega(g(n))$
Calculus: $\lim _{n \rightarrow \infty} f(n) / g(n)=0$ if the limit exists.
$f(n) \in \mathrm{O}(g(n))($ old style $f(n)=\mathrm{O}(g(n)))$
Said: $f(n)$ is big Oh of $g(n)$
Casual: f is smaller (faster) than or equal to g.
Informal: f is eventually smaller than g (up to a constant).
Definition: $\exists c, n_{0}$ such that $\forall n \geq n_{0} \quad f(n) \leq c g(n)$
Calculus: $\lim _{n \rightarrow \infty} f(n) / g(n)<\infty$ if the limit exists.
$f(n) \in \Omega(g(n))($ old style $f(n)=\Omega(g(n)))$
Said: $f(n)$ is big Omega of $g(n)$
Casual: f is greater (slower) than or equal to g.
Informal: f is eventually greater than g (up to a constant).
Definition: $\exists c \neq 0, n_{0}$ such that $\forall n \geq n_{0} \quad f(n) \geq c g(n)$
Calculus: $\lim _{n \rightarrow \infty} f(n) / g(n)>0$ if the limit exists.
$f(n) \in \Theta(g(n)) \quad$ (old style $f(n)=\Theta(g(n)))$
Said: $f(n)$ is big Theta of $g(n)$
Casual: f is approximately the same as g.
Definition: $f(n) \in \mathrm{O}(g(n))$ and also $f(n) \in \Omega(g(n))$
Calculus: $\lim _{n \rightarrow \infty} f(n) / g(n) \in(0, \infty)$ if the limit exists.

Usage the symbols $\mathrm{O}, \mathrm{o}, \Omega$, and Θ are not function symbols. Formally $\Omega(h)$) is a class of functions. Used "old style" they should only be used "at the top level" on the right hand side of an equation. Always use parentheses after these synmbols.

Generic $\Theta(f(n))$ formulæ.

- If $f(n)=c \cdot g(n)$ then $f(n) \in \Theta(g(n))$. Constants don't matter.
- If $f(n)=a_{0}+a_{1} n+a_{2} n^{2}+\cdots+a_{k-1} n^{k-1}+a_{k} n^{k}$, where $a_{k} \neq 0$, then $f(n) \in \Theta\left(n^{k}\right)$. Don't sweat the small stuff (polynomials).
- If $g(n) \in \mathrm{o}(f(n))$ then $f(n)+g(n) \in \Theta(f(n))$. Don't sweat the small stuff (general).
- $f(n)+g(n) \in \Theta(\max (f(n), g(n))$. [This one comes up over and over in algorithm analysis.]
- If $f(n) \in \Theta((\log n))$ and $g(n) \in \Theta\left(n^{\epsilon}\right)$ (where $\left.\epsilon>0\right)$ then $f(n) \in \mathrm{o}(g(n))$. Logarithms are smaller than polynomials.
- If $f(n) \in \Theta\left(n^{k}\right)$ and $g(n) \in \Theta\left(c^{n}\right)$, where $c>1$, then $f(n) \in \mathrm{o}(g(n))$. Polynomials are smaller than exponential functions.

Logarithms.

- If $f(n) \rightarrow+\infty$ and $g(n) \rightarrow+\infty$ and $f(n) \in \Theta(g(n))$ then $\log f(n) \in$ $\Theta(\log g(n))$. (N.B. the converse does not hold!) logs preserve Θ.
- [Charlie's Rule] If $f(n) \rightarrow+\infty$ and $g(n) \rightarrow+\infty$ and $\lim _{n \rightarrow \infty} \frac{\log f(n)}{\log g(n)}<1$ then $f(n) \in \mathrm{o}(g(n)) .{ }^{1}$ This rule helps a lot in dealing with odd functions like $n^{1 /(\log \log n)}$.
- $\log _{a} n \in \Theta\left(\log _{b} n\right)$. The base doesn't matter.

Factorials.

Stirling's formula $n!=\sqrt{2 \pi n}\left(\frac{n}{e}\right)^{n}\left(1+\frac{1}{12 n}+\frac{1}{288 n^{2}}+g(n)\right)$
where $g(n) \in \mathrm{o}\left(n^{-2}\right)$.
Consequently $\log n!=\Theta(n \log n)$.

[^0]
[^0]: ${ }^{1}$ I know about this nice result from Charlie Obimbo, who presented it at WCCCE ${ }^{\prime} 03$.

