
CPSC 200 An Asymptotic Greek Gift Horse updated in 2021

Symbol “Think” Value of L† Formal Meaning‡

o “<” L = 0 f(n) ∈ O(g(n)) but not f(n) ∈ Ω(g(n))

O “≤” L <∞ ∃c, n0[∀n ≥ n0[f(n) ≤ cg(n)]]

Ω “≥” L > 0 ∃c, n0[c 6= 0 & ∀n ≥ n0[f(n) ≥ cg(n)]]

Θ “=”. 0 < L <∞ f(n) ∈ O(g(n)) and also f(n) ∈ Ω(g(n))

† Value of L = lim
n→∞

f(n)/g(n) when it exists.

‡ Formal meaning of f(n) = (g(n)).

Figure 1: Greek Notation

Asymptotic Formulæ

f(n) ∈ o(g(n)) (old style f(n) = o(g(n)))

Said: f(n) is little Oh of g(n)

Casual: f is strictly smaller (faster) than g.

Definition: f(n) ∈ O(g(n)) but not f(n) ∈ Ω(g(n))

Calculus: lim
n→∞

f(n)/g(n) = 0 if the limit exists.

f(n) ∈ O(g(n)) (old style f(n) = O(g(n)))

Said: f(n) is big Oh of g(n)

Casual: f is smaller (faster) than or equal to g.

Informal: f is eventually smaller than g (up to a constant).

Definition: ∃c, n0 such that ∀n ≥ n0 f(n) ≤ cg(n)

Calculus: lim
n→∞

f(n)/g(n) <∞ if the limit exists.

f(n) ∈ Ω(g(n)) (old style f(n) = Ω(g(n)))

Said: f(n) is big Omega of g(n)

Casual: f is greater (slower) than or equal to g.

Informal: f is eventually greater than g (up to a constant).

Definition: ∃c 6= 0, n0 such that ∀n ≥ n0 f(n) ≥ cg(n)

Calculus: lim
n→∞

f(n)/g(n) > 0 if the limit exists.

f(n) ∈ Θ(g(n)) (old style f(n) = Θ(g(n)))

Said: f(n) is big Theta of g(n)

Casual: f is approximately the same as g.

Definition: f(n) ∈ O(g(n)) and also f(n) ∈ Ω(g(n))

Calculus: lim
n→∞

f(n)/g(n) ∈ (0,∞) if the limit exists.



CPSC 200 An Asymptotic Greek Gift Horse updated in 2021

Usage the symbols O, o, Ω, and Θ are not function symbols. Formally Ω(h))
is a class of functions. Used “old style” they should only be used “at the top
level” on the right hand side of an equation. Always use parentheses after
these synmbols.

Generic Θ(f(n)) formulæ.

• If f(n) = c · g(n) then f(n) ∈ Θ(g(n)). Constants don’t matter.

• If f(n) = a0 + a1n + a2n
2 + · · · + ak−1n

k−1 + akn
k, where ak 6= 0, then

f(n) ∈ Θ(nk). Don’t sweat the small stuff (polynomials).

• If g(n) ∈ o(f(n)) then f(n) + g(n) ∈ Θ(f(n)). Don’t sweat the small stuff
(general).

• f(n) + g(n) ∈ Θ(max(f(n), g(n)). [This one comes up over and over in
algorithm analysis.]

• If f(n) ∈ Θ((log n)) and g(n) ∈ Θ(nε) (where ε > 0) then f(n) ∈ o(g(n)).
Logarithms are smaller than polynomials.

• If f(n) ∈ Θ(nk) and g(n) ∈ Θ(cn), where c > 1, then f(n) ∈ o(g(n)).
Polynomials are smaller than exponential functions.

Logarithms.

• If f(n) → +∞ and g(n) → +∞ and f(n) ∈ Θ(g(n)) then log f(n) ∈
Θ(log g(n)). (N.B. the converse does not hold!) logs preserve Θ.

• [Charlie’s Rule] If f(n) → +∞ and g(n) → +∞ and limn→∞
log f(n)
log g(n) < 1

then f(n) ∈ o(g(n)).1 This rule helps a lot in dealing with odd functions
like n1/(log logn).

• loga n ∈ Θ(logb n). The base doesn’t matter.

Factorials.

Stirling’s formula n! =
√

2πn
(n
e

)n(
1 +

1

12n
+

1

288n2
+ g(n)

)
where g(n) ∈ o(n−2).
Consequently log n! = Θ(n log n).

1I know about this nice result from Charlie Obimbo, who presented it at Wccce ’03.


