
UNBC Laboratory Assignment
Computer Science 200—Fall 2022

Timing Big Integer Arithmetic

Due Date:

This assignment is due Wednesday, 2022-09-21 by the beginning of lecture.

Before Coding

Plotting

Read “Instructions on Plotting and Timing”.1 To be sure that you understand what
you read, see if you can answer the following questions:

• How should the x-values (independent data values) be spaced?
• Approximately what range should the y-(dependent) values cover?
• Suppose that you meansure time values that lie between 0.00218 s and 0.01062 s,

what units should you use to report the results?
• Where should these units be reported?

Plotting with Excel™

If you use Microsoft Excelto plot your data, know (or learn) how to coerce Excel into
producing charts suitable for scientific use. You likely want to

• use X-Y (Scatter) plots,
• add axis titles, and minor grid-lines,
• ensure that the axes cross at (0.0).

BigIntegers

Read about the java.math.BigInteger class. One important fact about BigIntegers
is that you cannot treat the running time of operations as constants independent of
the size of the integers. Learn

• how many constructors this class has,

1Can be found at https://web.unbc.ca/~casper/Semesters/2022-05F/200.php under “Handouts”.

© 2022 David Casperson. This document may be
freely copied, provided that this copyright notice is

preserved.

https://web.unbc.ca/~casper/assets/pdf/cpsc200/2018/2018-cpsc200-plotting.pdf
https://web.unbc.ca/~casper/Semesters/2022-05F/200.php

UNBC CPSC 200

• which constructor is likely most appropriate for constructing random numbers,
• how to add two BigIntegers,
• how to multiply two BigIntegers.

Random number generation

A couple of the constructors for the BigInteger class take random number gener-
ators as arguments. Use an object from java.util.Random as your random num-
ber generator. It is good programming practice to create only one random number
generator for the whole program.

System.nanoTime()

Read the Oractle doucmentation for System.nanoTime(). Be sure to understand

• What is the return type of this method?
• (How long before wrap-around?)
• What does the documentation say about precision versus resolution?

Coding

Stopwatches

Create a StopWatch class that has the methods shown in Figure 1 on the following
page. Note that the action methods have return type StopWatch rather than CPSC
101-style return type void . This alternate return style allows one to write code like

StopWatch sx = new StopWatch().reset().start() ;

Use System.nanoTime() to provide the timing information. Your stopwatch must
work as described. In particular it should be possible to repeatedly stop and start
the stopwatch without resetting the stopwatch.

Code like
1 int nTimes = 0 ;

2 watch.stop().reset() ;

3 while (watch.elapsed() < 0.01 || nTimes<2)

4 {

5 // setup a problem

6 watch.start();

Laboratory Assignment Timing Big Integer Arithmetic • 2

UNBC CPSC 200

7 // run a problem

8 watch.stop() ; ++nTimes ;

9 }

10 return watch.elapsed() / nTimes ;

should produce an average running time. Note that this code relies on stopping and
starting the watch not resetting the total elapsed time. Also note that addtional vari-
ables to keep track of start, stop, and elapsed times are not necessary. Finally, note
how the code carefully only times the actual running times for problems.

Method Meaning

attributes
public double elapsed()

Returns the elapsed CPU time in seconds at the time of the
call.

public boolean isRunning()

true if and only if start has been called more recently than
stop.

actions
public StopWatch start()

Starts the stop watch. Has no effect if the stop watch is
already started. Does not reset the time. Returns this.

public StopWatch stop()

Stops the stop watch. Has no effect if the stop watch is
already stopped. Does not reset the time. Returns this.

public StopWatch reset()

Resets the elapsed time to zero. Neither starts nor stops the
stop watch. Returns this.

Constructors
public StopWatch()

Creates a new StopWatch, which is initially stopped with
zero elapsed time.

Figure 1: Properties and Actions of StopWatches

Laboratory Assignment Timing Big Integer Arithmetic • 3

UNBC CPSC 200

Addition and Multiplication

⇒ Write two programs (one is ok) that uses your StopWatch clas from above, and the
java.math.BigInteger class to measure the average time for the following operations:

• Measure the average time to add two random n-bit big integers, where n varies
over an appropriate range.

• Measure the average time to multiply two random n-bit big integers, where n
varies over an appropriate range.

Your programs should write comma separated values to System.out (or possibly a
file). For instance, output might look like

Size, Time(ms)

60000, 4.185

120000, 3.683

180000, 6.379

270000, 13.774 ...

If you write to System.out, it should be possible to produce output suitable for Ex-
cel, by running a command like

java TestMultiplication 60000 > multData.csv

Comments on Implementation

1. You may need to some preliminary tests to find a good problem-size range.

2. For small problem sizes, the running time that you are measuring may be small
compared to the resolution of System.nanoseconds(). To accommodate this,
you may need to use techniques like starting your stopwatch, running multiple
calculations, and then stopping your stop-watch.

On my laptop multiplication of 30 000 bit numbers takes about 320 µs, but the
standard deviation of the values is nearly that large. Using an increment of
100 000 git, and looping for each test for a total of at least 0.5 s (then using the
average) seems to give good results.

On my laptop addition of 10, 000 000 (107) bit numbers takes about 500 µs, and
using timing averaged over a half second seems to give good results.

3. Older versions of Java have less efficient algorithms for the java.math.BigInteger
class. If you have access to an old version of Java, please use it. The data are
more interesting.

Laboratory Assignment Timing Big Integer Arithmetic • 4

UNBC CPSC 200

⇒ Plot your data. Provide separate graphs for the addition data and the multiplication
data. Addition is likely to be much faster than multiplication, so you likely need differ-
ent data ranges.

⇒ Comment on the mathematical nature of the running times. For instance, if you in-
crease the problem size by a factor of 4, does the running time increase by the same
factor? What do you suspect the functional relation between problem size and running
time is?

Hand In

At the time this lab was written, the mechanics of Moodle submission were not clear.
Please submit the following items:

• all Java code (e.g., Stopwatch.java, TestAddition.java, TestMultiplication.java,
and any other cude that you write).

These may be submitted as individual .java files, or as a .jar file containing the
.java source code.

In your code, add comments that answer the following questions:

? why you chose the constructor for BigIntegers that you did, and the URL of
the Oracle Java documentation for the BigInteger class.

? Comment on the accuracy of your stopwatch.

• Two clearly identified charts showing your data, stored in a graphical format
(.pdf, .png, . . .).

• The data produced by your programs and used to create the charts. These may be
uploaded as plain text files, or enclosed in an Excel spreadsheet. If you submit
an Excel spreadsheet, you must still submit the charts separately.

• Your guesses, supported by your data, as to how the run times grow with prob-
lem size for big integer addition and multiplication.

Note the Stopwatch code will marked for completeness and correctness, regardless of
the extent to which you use your Stopwatch in your timing code.

Laboratory Assignment Timing Big Integer Arithmetic • 5

