
UNBC Laboratory Assignment
Computer Science 200—Fall 2021

Dijkstra’s Dutch Flag Problem

Goals:

The goals of this laboratory exercise are three-fold:

• To practise using loop-invariants.

• To better understand the partition algorithm.

• To gain confidence in interfacing with libraries supplied by someone else.

Due Date:

This assignment is in two parts.

• Part I is due Wednesday, 03 November by the beginning of class.

• Part II is due Wednesday, 10 November by the beginning of class.

Utilities

Your goal for this part of the assignment is to write a Utilities class that contains several
small algorithms for working with a generic array. The interface is shown in Figure 1 on page 5.

With the exception of the swap method, each of these algorithms contains one or more loops.
Write your code to contain a comment that describes the loop invariant, as shown in the sample
shuffle algorithm.

There are four isSorted algorithms for determining if a section [`, r) of an array data

is sorted with respect to a comparator c . If [`, r) is not supplied, it should be taken
to be [0, data.length). If the comparator c is not supplied, it should be taken to be
Comparator.naturalOrder() . Three of these algorithms should just call a different flavour
of the algorithm. The fourth should document its loop invariant(s).

Finally, there is a partition algorithm. The intent is as follows: after executing

int m = partition(data, ell, arr, p);

the following should be true:

1. for i ∈ [0, `), data[i] should be unchanged.
2. for i ∈ [`, m), p.test(data[i]) should be false.
3. for i ∈ [m, r), p.test(data[i]) should be true.

© 1994–2022 David Casperson. This document may
be freely copied, provided that this copyright notice is

preserved.



UNBC CPSC 200

4. for i ∈ [r, n), data[i] should be unchanged.

where ` = ell, r = arr, and n = data.length.

⇒ Explain why this partition algorithm is slightly different from the quick sort partition al-
gorithm.

⇒ Submit your Utilities.java file via blackboard.

⇒ This part is due by Wednesday, 03 November.

The Dutch Flag problem

The Dutch flag problem is due to Edsgar Dijkstra, and illustrates the value of carefully think-
ing through loop invariants.

The problem goes as follows. You are given an array filled with n red, white, and blue objects;
and you are to sort the array so that the red objects are to the left, and the blue ones to the
right.1 In general, sorting requires Ω(n log n) average time, but in this particular case, because
there are only three possible kinds of objects, you can achieve Θ(n) worst-case time.

Write two algorithms to solve the Dutch flag problem.

1. The first algorithm should use a single for-loop. Before coding this algorithm, draw a
loop invariant that show where four regions—the red region, the white region, the blue
region, and the unknown region–lie, and what variables describe the edges of the regions.
Include the loop invariant, either directly in the code, or in separate documentation.

2. The second variant should contain no loops, and two calls to Utilities.partition (See
the note below about λ-expression for help with using partition on RedWhiteBlue ob-
jects.)

Write your algorithms to be compatible with the RedWhiteBlue class shown in Figure 2 on
page 6. An implmentation of this class will be given to you as a .jar file on the black-
board site (see “Using .jar files” below).

Test both of your algorithms by

1. showing that they correctly sort a random array (using Utilities.isSorted), and
2. showing that the running time is linearly proportional to the problem size (by plotting,

as in previous labs).

⇒ Submit your *.java for your Utilities class, your Stopwatch class, your two algorithms
for sorting, and your testing code.

⇒ Submit your test data.

⇒ This part is due by Wednesday, 10 November.

1To be truly Dutch, the red ones should be at the top, and the blue ones at the bottom. Red on the outside and blue
on the inside is the French flag.

Laboratory Assignment Dijkstra’s Dutch Flag Problem • 2



UNBC CPSC 200

Using .jar files

Exactly how to use .jar files depends on how you compile and run Java.

If you use basic command line compilation, something like
Unix

javac -cp .:RBW.jar *.java

java -cp .:RBW.jar Main

or2

Windows
javac -cp .;RBW.jar *.java

java -cp .;RBW.jar Main

should work (assuming that public static void main(. . . ) is contained in Main.java).

λ-expressions, or how to make a Predicate

In order to separate the red objects from the non-red objects in an array of RedWhiteBlue

objects using Utilities.partition, we need to create an object that satisfies the interface
java.util.function.Predicate . Here is a sequence of decreasingly painful ways to do so:

1. create a named class implementing Predicate, then create an object:
1 private static class RedPredicate implements Predicate<RedWhiteBlue>

2 {

3 public boolean test(RedWhiteBlue obj) { return obj.isRed() ; }

4 }

5 // ...

6 Utilities.partition(data, new RedPredicate()) ;

2. create an object of an anonymous class implementing Predicate:
1 var redPredicate = new Predicate<RedWhiteBlue> ()

2 {

3 public boolean test(RedWhiteBlue obj) { return obj.isRed() ; }

4 } ;

5 Utilities.partition(data, redPredicate) ;

3. create an explicit λ-expression as follows
1 Utilities.partition(data, (obj)->{ return obj.isRed() ; }) ;

4. create an explicit λ-expression, but use some shortcuts
1 Utilities.partition(data, obj->obj.isRed() ) ;

5. Use a :: expression:
1 Utilities.partition(data, RedWhiteBlue::isRed ) ;

More information about Java λ expressions can be found at:
2Thaks to KT for reminding me that Windows has a different path syntax

Laboratory Assignment Dijkstra’s Dutch Flag Problem • 3



UNBC CPSC 200

• https://docs.oracle.com/javase/tutorial/java/javaOO/lambdaexpressions.html

• http://tutorials.jenkov.com/java/lambda-expressions.html#

var-parameter-types-java-11

• https://www.baeldung.com/java-8-lambda-expressions-tips

Laboratory Assignment Dijkstra’s Dutch Flag Problem • 4

https://docs.oracle.com/javase/tutorial/java/javaOO/lambdaexpressions.html
http://tutorials.jenkov.com/java/lambda-expressions.html#var-parameter-types-java-11
http://tutorials.jenkov.com/java/lambda-expressions.html#var-parameter-types-java-11
https://www.baeldung.com/java-8-lambda-expressions-tips


UNBC CPSC 200

import java.util.function.Predicate ; 1

import java.util.Comparator ; 2

3

public class Utilities 4

{ 5

// a classic 6

public static <E> void swap(E [] data, int i, int j) {...} 7

8

// tests for sortedness 9

public static <E extends Comparable<? super E>> 10

boolean isSorted(E [] data) {...} 11

public static <E> 12

boolean isSorted(E [] data, Comparator<E> c) {...} 13

public static <E extends Comparable<? super E>> 14

boolean isSorted(E [] data, int i, int j) {...} 15

public static <E> 16

boolean isSorted(E [] data, int i, int j, Comparator<E> c) {...} 17

18

19

// a general purpose partition algorithm 20

public static <E> 21

int partition(E [] data, int ell, int arr, Predicate<E> p) {...} 22

23

// a sample algorithm, with loop invariant 24

public static <E> void shuffle(java.util.Random rnd, E [] data) 25

{ 26

final int n = data.length ; 27

for(int i=n;i>1;--i) 28

{ 29

// Loop Invariant: 30

// The n-i rightmost elements are randomly selected 31

// with equal probabilities from the initial array. 32

// The range [0,i) contains the elements that have not 33

// yet been selected. 34

swap(data,i-1,rnd.nextInt(i)) ; 35

} 36

} 37

} 38

Figure 1: Utilities class declaration

Laboratory Assignment Dijkstra’s Dutch Flag Problem • 5



UNBC CPSC 200

public class RedWhiteBlue implements Comparable<RedWhiteBlue> 1

{ 2

// ... implementation details 3

4

public int compareTo(RedWhiteBlue that) { ... } 5

// Red < White < Blue 6

7

@override 8

public String toString () { ... } 9

10

// Queries to determine the color of an object. 11

public boolean isRed () { /* ... */; } 12

public boolean isWhite() { /* ... */; } 13

public boolean isBlue () { /* ... */; } 14

// for a given object, exactly one of isRed, isWhite or 15

// is isBlue is true 16

17

18

/* ============================== 19

* static methods to get RedWhiteBlue objects 20

*/ 21

public static RedWhiteBlue getRed () { /* ... */ } 22

public static RedWhiteBlue getWhite () { /* ... */ } 23

public static RedWhiteBlue getBlue () { /* ... */ } 24

// getWhite().isWhite() is true, and so on ... 25

26

} 27

Figure 2: RedWhiteBlue class declaration

Laboratory Assignment Dijkstra’s Dutch Flag Problem • 6


