
UNBC Laboratory Assignment
Computer Science 200—Fall 2018

Timing Big Integer Multiplication

Due Date:

This assignment is due Monday, 2018-09-17 at the beginning of lecture.

Stopwatches

Create a StopWatch class that has the methods shown in Figure 1 on page 3. Note
that the action methods have return type StopWatch rather than CPSC 101-style return
type void . This alternate return style allows one to write something like

StopWatch sx = new StopWatch().reset().start() ;

Use System.nanoTime() to provide the timing information. Be aware that although
System.nanoTime() returns values in nanoseconds, the actual high-precision timer in
Java may well be coarser.

Read the “Instructions on Plotting and Timing” on Casperson’s web-site.

BigIntegers

Read about the java.math.BigInteger class. One important fact about BigIntegers
is that you cannot treat the running time of operations as constants independent of the
size of the integers.

⇒ Write a program that uses your StopWatch clas from above, and the java.math.BigInteger
class to measure the average time for the following operations:

• Measure the average time to add two n-bit big integers, where n varies between
103 and 108.

• Measure the average time to multiply two n-bit big integers, where n varies be-
tween 103 and 108.

© 2018 David Casperson. This document may be
freely copied, provided that this copyright notice is

preserved.

http://casper.unbc.ca/assets/pdf/cpsc200/2018/2018-cpsc200-plotting.pdf


UNBC CPSC 200

⇒ Plot your data. (See the “Instructions on Plotting and Timing”.) Provide separate
graphs for the addition data and the multiplication data.

⇒ Comment on the mathematical nature of the running times. For instance, if you in-
crease the problem size by a factor of 100, does the running time increase by the same
factor? What do you suspect the functional relation between problem size and running
time is?

Comments on Implementation

1. The problem-size range 103 to 108 seems appropriate for my laptop. You may
have to adjust the range to be appropriate for the machine on which you perform
your tests.

2. For small problem sizes, the running time that you are measuring may be small
compared to the precision of System.nanoseconds(). To accommodate this, you
may need to use techniques like starting your stopwatch, running multiple cal-
culations, and then stopping your stop-watch.

3. Older versions of Java have less efficient algorithms for the java.math.BigInteger
class. If you have access to an old version of Java, please use it. The data are
more interesting.

Laboratory Assignment Timing Big Integer Multiplication • 2

http://casper.unbc.ca/assets/pdf/cpsc200/2018/2018-cpsc200-plotting.pdf


UNBC CPSC 200

Method Meaning

attributes
public double elapsed()

Returns the elapsed CPU time in seconds at the time of the
call.

actions
public StopWatch start()

Starts the stop watch. Has no effect if the stop watch is
already started. Does not reset the time. Returns this.

public StopWatch stop()

Stops the stop watch. Has no effect if the stop watch is
already stopped. Does not reset the time. Returns this.

public StopWatch reset()

Resets the elapsed time to zero. Neither starts nor stops the
stop watch. Returns this.

Constructors
public StopWatch()

Creates a new StopWatch, which is initially stopped with
zero elapsed time.

Figure 1: Properties and Actions of StopWatches

Laboratory Assignment Timing Big Integer Multiplication • 3


