Heap Sort
Notes

Heap Sort Notes

David Casperson

!Department of Computer Science
University of Northern BC

2007-11-12 / CPSC 200 Lecture

Heap Sort
Notes

QOutline

The Ideas
m The Notion of a Heap

m Implementing a Heap in an array
m Forming the Heap

m Rebuilding the Heap

Summary
m New ldeas
m Report Card

The Notion of a Heap

Heap Sort
Notes

A heap is a binary tree

m where the left and right subtrees are heaps, and

m the root of the tree is larger than everything below it.

Array Based Heaps

The Notion of a Heap

Heap Sort
Notes

m often implement heaps using trees and pointers

m can use arrays when the shape doesn’t change often
m for O-indexed arrays:

m we store the left subnode of node / in node 2/ + 1
m we store the right subnode of node i in node 2/ 4 2

Array Based Heaps

The Notion of a Heap

Heap Sort
Notes

m often implement heaps using trees and pointers
m can use arrays when the shape doesn’t change often
m for O-indexed arrays:

m we store the left subnode of node / in node 2/ + 1

m we store the right subnode of node i in node 2/ 4 2
m the parent of node 7 is in node (i —1)/2.

Building a Heap

How to form a heap

Heap Sort
Notes

Building a Heap

How to form a heap

Heap Sort
Notes

Building a Heap

How to form a heap

Heap Sort
Notes

Building a Heap

How to form a heap

Heap Sort
Notes

Building a Heap

How to form a heap

Heap Sort
Notes

Building a Heap

How to form a heap

Heap Sort
Notes

Building a Heap

How to form a heap

Heap Sort
Notes

Building a Heap

How to form a heap

Heap Sort
Notes

Building a Heap

How to form a heap

Heap Sort
Notes

Building a Heap

How to form a heap

Heap Sort
Notes

Building a Heap

How to form a heap

Heap Sort

Notes

m Building a heap from the bottom up costs ®(n)-time

m Building a heap from the bottom up costs ®@(1)-space
m Building a heap is not stable.

Unbuilding the Heap

Making a hole

Heap Sort
Notes

Unbuilding the Heap

Moving the Hole Down

Heap Sort
Notes

Unbuilding the Heap

Moving the Hole Down

Heap Sort
Notes

Njojo|~|[wNd|=|(0|O

Unbuilding the Heap

Moving the Hole Down

Heap Sort
Notes

Unbuilding the Heap

Moving an Element Up

Heap Sort
Notes

[(oR ¢, B IENT NV R B \O N I Ne ol Nen)

Unbuilding the Heap

Moving an Element Up

Heap Sort
Notes

oW |IN|=|0|O

Unbuilding the Heap

Moving an Element Up

Heap Sort
Notes

oW |IN|=|0|O

-
S

Unbuilding the Heap

The second element

Heap Sort
Notes

oW |IN|=|0|O

-
S

Unbuilding the Heap

The second element

Heap Sort
Notes

-
N

—_
e

—_

O | fWIN|=|[O|O|N|[D

-
S

Unbuilding the Heap

The second element

Heap Sort
Notes

Unbuilding the Heap

The second element

Heap Sort
Notes

-
N

—_
e

-
o

Q| [WOIN|=[0|o|N|D

Unbuilding the Heap

The second element

Heap Sort
Notes

—_
e

-
o

WD~ OIN|=[0|o |[N|[D

—_

-
S

Unbuilding the Heap

The third element

Heap Sort
Notes

WD~ OIN|=[0|o |[N|[D

—_

-
S

Unbuilding the Heap

The third element

Heap Sort
Notes

WD ||| o

—_

-
S

Unbuilding the Heap

The third element

Heap Sort
Notes

Unbuilding the Heap

The third element

Heap Sort
Notes

GWIN|=[0|o|~[D

—_
w

-
S

Unbuilding the Heap

The third element

Heap Sort
Notes

AN |=[0|o |01

—_
w

-
S

Unbuilding the Heap

The third element

Heap Sort
Notes

Unbuilding the Heap

Summary

Heap Sort
Notes

It is faster to move a hole down, then an element up.

Moving a hole down costs ©(log n)-time.

Moving a element up costs worst-case @ (log n)-time.
Moving a element up costs average-case ©(1)-time?
Unbuilding the whole heap costs ®(log(n!))-time.

Rebuilding the Heap

Unbuilding the whole heap costs ©(1)-space.

Unbuilding the heap is not stable.

Heap Sort Summary

New Ideas

Heap Sort

Notes Heap Sort:
m uses a heap

m represents a binary tree in an array

m has worst-case running time of ©(nlog n)

m has constant extra Space usage.

Report Card

Quick Sort Summary

Heap Sort

Notes

" Tuworst(n) = ©(nlogn)

Report Card

Quick Sort Summary

Heap Sort

Notes

m Tyorst(n) = O(nlog n)
& Tave(n) = O(nlog n)
almost all the time

Report Card

Quick Sort Summary

Heap Sort

Notes

m Tyorst(n) = O(nlog n)
& Tave(n) = O(nlog n)
almost all the time

m O(1) extra storage for recursion

Quick Sort Summary
Report Card

Heap Sort
Notes

m Tyorst(n) = O(nlog n)
& Tave(n) = O(nlog n)
almost all the time

m O(1) extra storage for recursion

m not stable.

u}
o)
I
i
it

	The Ideas
	The Notion of a Heap
	Implementing a Heap in an array
	Forming the Heap
	Rebuilding the Heap

	Summary
	New Ideas
	Report Card

	The End

