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The Notion of a Heap

Heap Sort
Notes

A heap is a binary tree

m where the left and right subtrees are heaps, and

m the root of the tree is larger than everything below it.
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Notes

m often implement heaps using trees and pointers

m can use arrays when the shape doesn’t change often
m for O-indexed arrays:

m we store the left subnode of node / in node 2/ + 1
m we store the right subnode of node i in node 2/ 4 2
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Notes

m often implement heaps using trees and pointers
m can use arrays when the shape doesn’t change often
m for O-indexed arrays:

m we store the left subnode of node / in node 2/ + 1

m we store the right subnode of node i in node 2/ 4 2
m the parent of node 7 is in node (i —1)/2.
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Building a Heap

How to form a heap

Heap Sort

Notes

m Building a heap from the bottom up costs ®(n)-time

m Building a heap from the bottom up costs ®@(1)-space
m Building a heap is not stable.
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Unbuilding the Heap

Summary

Heap Sort
Notes

It is faster to move a hole down, then an element up.

Moving a hole down costs ©(log n)-time.

Moving a element up costs worst-case @ (log n)-time.
Moving a element up costs average-case ©(1)-time?
Unbuilding the whole heap costs ®(log(n!))-time.

Rebuilding the Heap

Unbuilding the whole heap costs ©(1)-space.

Unbuilding the heap is not stable.



Heap Sort Summary

New Ideas

Heap Sort

Notes Heap Sort:
m uses a heap

m represents a binary tree in an array

m has worst-case running time of ©(nlog n)

m has constant extra Space usage.
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Notes

" Tuworst(n) = ©(nlogn)
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m Tyorst(n) = O(nlog n)
& Tave(n) = O(nlog n)
almost all the time
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almost all the time

m O(1) extra storage for recursion
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m Tyorst(n) = O(nlog n)
& Tave(n) = O(nlog n)
almost all the time

m O(1) extra storage for recursion

m not stable.
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