Symbol	"Think"	Value of L^{\dagger}	Formal Meaning [‡]
0	"<"	L = 0	$f(n) = O(g(n))$ but not $f(n) = \Omega(g(n))$
O	"≤"	$L < \infty$	$\exists c, n_0 [\forall n \ge n_0 [f(n) \le cg(n)]]$
Ω	"≥"	L > 0	$\exists c, n_0 [c \neq 0 \& \forall n \geq n_0 [f(n) \geq cg(n)]]$
Θ	"=".	$0 < L < \infty$	$f(n) = \mathcal{O}(g(n))$ and also $f(n) = \Omega(g(n))$

```
† Value of L = \lim_{n \to \infty} f(n)/g(n) when it exists.
```

Figure 1: Greek Notation

Asymptotic Formulæ

```
f(n) = o(g(n)) (better f(n) \in o(g(n)))
      Casual: f is strictly smaller (faster) than g.
      Definition: f(n) \in O(g(n)) but not f(n) \in \Omega(g(n))
      Calculus: \lim_{n\to\infty} f(n)/g(n) = 0
f(n) = O(g(n)) (better f(n) \in O(g(n)))
      Casual: f is smaller (faster) than or equal to g.
      Informal: f is eventually smaller than g (up to a constant).
      Definition: \exists c, n_0 \text{ such that } \forall n \geq n_0 \quad f(n) \leq cg(n)
      Calculus: \lim_{n\to\infty} f(n)/g(n) < \infty
f(n) = \Omega(g(n)) (better f(n) \in \Omega(g(n)))
      Casual: f is greater (slower) than or equal to g.
      Informal: f is eventually greater than q (up to a constant).
      Definition: \exists c \neq 0, n_0 \ such \ that \ \forall n \geq n_0 \quad f(n) \geq cg(n)
      Calculus: \lim_{n\to\infty} f(n)/g(n) > 0
f(n) = \Theta(g(n)) (better f(n) \in \Theta(g(n)))
      Casual: f is approximately the same as g.
      Definition: f(n) \in O(g(n)) and also f(n) \in \Omega(g(n))
      Calculus: \lim_{n\to\infty} f(n)/g(n) \in (0,\infty)
```

[‡] Formal meaning of $f(n) = \underline{\hspace{0.1cm}}(g(n))$.

Usage the symbols O, o, Ω , and Θ are *not* function symbols. Formally $\Omega(h)$ is a class of functions. Used "old style" they should only be used "at the top level" on the right hand side of an equation. Always use parentheses after these symbols.

Generic $\Theta(f(n))$ formulæ.

- If $f(n) = c \cdot g(n)$ then $f(n) \in \Theta(g(n))$. Constants don't matter.
- If $f(n) = a_0 + a_1 n + a_2 n^2 + \dots + a_{k-1} n^{k-1} + a_k n^k$, where $a_k \neq 0$, then $f(n) \in \Theta(n^k)$. Don't sweat the small stuff (polynomials).
- If $g(n) \in o(f(n))$ then $f(n) + g(n) \in \Theta(f(n))$. Don't sweat the small stuff (general).
- $f(n) + g(n) \in \Theta(\max(f(n), g(n)))$. [This one comes up over and over in algorithm analysis.]
- If $f(n) \in \Theta((\log n))$ and $g(n) \in \Theta(n^{\epsilon})$ (where $\epsilon > 0$) then f(n) = o(g(n)). Logarithms are smaller than polynomials.
- If $f(n) \in \Theta(n^k)$ and $g(n)in\Theta(c^n)$, where c > 1, then $f(n) \in o(g(n))$. Polynomials are smaller than exponential functions.

Logarithms.

- If $f(n) \to +\infty$ and $g(n) \to +\infty$ and $f(n) \in \Theta(g(n))$ then $\log f(n) \in \Theta(\log g(n))$. (N.B. the converse does not hold!) logs preserve Θ .
- [Charlie's Rule] If $f(n) \to +\infty$ and $g(n) \to +\infty$ and $\lim_{n \to \infty} \frac{\log f(n)}{\log g(n)} < 1$ then $f(n) \in o(g(n))$.¹ This rule helps a lot in dealing with odd functions like $n^{1/(\log \log n)}$.
- $\log_a n \in \Theta(\log_b n)$. The base doesn't matter.

Factorials.

Stirling's formula
$$n! = \sqrt{2\pi n} \left(\frac{n}{e}\right)^n \left(1 + \frac{1}{12n} + \frac{1}{288n^2} + g(n)\right)$$
 where $g(n) = o(n^{-2})$. Consequently $\log n! = \Theta(n \log n)$.

¹I know about this nice result from Charlie Obimbo, who presented it at WCCCE '03.