
jfcba

ihged

 edcba

Figure 1: The merging algorithm

Algorith Analysis and Development
Fall 2007

These notes are intended for 2007-10-25. They introduce various con-
cepts related to sorting and explain merge sorting using vectors.

1 The Merge Sort Algorithm

The heart of the merge-sort algorithm is merging. If we have two sorted
collections of sizes m and n we combine them into one sorted collection
in time O(m + n). With lists we can do this merging by doing list surgery
without extra storage. In general we need extra storage of size O(m + n).

To merge two sorted collections into one we need essentially three
pointers. The first two point at the beginning of the data that remains to
be merged, and the third at the remaining space into which the merge is
being done. This is illustrated in Figure 1.

October 22, 2007 1

The merge sort algorithm now works by divide-and-conquer. First we
check to see if we have an array of size less than two. If we do, it is
certainly sorted and we can stop.

If it is not,
• split the array into two.
• Mege sort the first half (recursively).
• Mege sort the second half (recursively).
• Merge the two halves.
Managing the memory involved is a little bit tricky. In general, we

have a target where we want the merged and sorted result to show up,
and we have a region of temporary memory that we can use for interme-
diate steps. We can refine our algorithm above to be:

If we are merge-sorting a chunk of storage with two or more elements
and we want the data to end up in target and we have spare storage in
temp we need to:

• Mege sort the first half (recursively) to end up in temp using target
as temporary stoage.

• Mege sort the second half (recursively) to end up in the second half
of temp using the second half of target as temporary storage.

• Merge the two halves of temp back into target.

2 Templated Merge Sort Code

We know convert the ideas above into templated code in the STL style
using iterators wherever we can.

2.1 The merge algorithm

Generically we can merge two different kinds of input streams into
one output stream. This is expressed in the algorithm shown in Figure 2.

Notes

October 22, 2007 2

4 template <typename Iterator1,

5 typename Iterator2,

6 typename Iterator3>

7 Iterator3

8 mergeRanges(Iterator1 begin1,

9 Iterator1 end1,

10 Iterator2 begin2,

11 Iterator2 end2,

12 Iterator3 destination)

13 {

14 while (begin1!=end1 && begin2!=end2)

15 {

16 if (*begin2 < *begin1)

17 *destination++ = *begin2++ ;

18 else

19 *destination++ = *begin1++ ;

20 }

21 while (begin1!=end1)

22 *destination++ = *begin1++ ;

23 while (begin2!=end2)

24 *destination++ = *begin2++ ;

25 return destination ;

26 }

Figure 2: The Merge algorithm

October 22, 2007 3

lines 15-20 Note that we prefer to take items from the first sequence.
That is, if items in the two sequences are equal take from the first
sequence.

lines 15-20 Also note that we can write the loop body with flatter looking
logic as:

bool useFirst = ! (*begin2 < *begin1) ;

*destination++ = * (useFirst ? begin1 : begin2)++ ;

It is arguable whether this is any better than the code given. Note
that we are trying to do all comparison in terms of “<”, as this is
what the STL does.

line 21 Note that when we reach line 21 we know that either begin1==end1
or begin2==end2, so at least one of the following while loops does
nothing, and the other might copy the tail of one sequence.

2.2 The mergeSortTo algorithm

The mergeSortTo algorithm is shown in Figure 3. Before beginning to
understand the internal details of the algorithm, it is important to un-
derstand what it claims to do. The claim is that the data from begin to
end is sorted to a (possibly) new space that begins at to. The algorithm
returns an iterator that points one past the end of the range where the
sorted data has been put. The iterator temp points a chunk of storage of
size at least end-begin that can be used as temporary storage.

This has the usual structure of a recursive algorithm. First we test
for the base cases. Here we can’t hope to split the problem into smaller
problem if original problem has size two, so the size zero and size one
cases are our base cases.

Lines 42–46 handle the base case of size zero. Note that there is noth-
ing to do here.

Lines 47–51 handle the base case of size one. We haven’t yet described
the middleOf algorithm, but it attempts to set middle to be half way
between begin and end. It only equals begin when end-begin<2, which
justifies the claim that we are in the size one base case here. Here we need
to copy the data item to the output range.

October 22, 2007 4

37 template <typename Iterator>

38 Iterator

39 mergeSortTo(Iterator begin, Iterator end, Iterator to, Iterator temp)

40 {

41 Iterator middle=middleOf(begin,end) ;

42 if (begin==end)

43 {

44 // base case: range is size 0

45 return to ;

46 }

47 else if (begin==middle)

48 {

49 // base case: range is size 1

50 *to++ = *begin ;

51 return to ;

52 }

53 else

54 {

55 // we have range of at least size 2. recursion kicks in

56 Iterator temp2 = mergeSortTo(begin, middle, temp, to) ;

57 Iterator temp3 = mergeSortTo(middle, end, temp2, to) ;

58 return mergeRanges(temp, temp2, temp2, temp3, to) ;

59 }

60 }

Figure 3: the mergeSortTo algorithm

October 22, 2007 5

29 template <typename Iterator1>
30 Iterator1 middleOf(Iterator1 b, Iterator1 e)
31 {
32 Iterator1 middle(b) ;
33 std::advance(middle, std::distance(b,e)/2) ;
34 return middle ;
35 }

Figure 4: the middleOf function

18 template <typename Iterator>
19 void mergeSort(Iterator begin, Iterator end)
20 {
21 typedef typename std::iterator_traits<Iterator>::value_type elt_t ;
22 std::vector<elt_t> temp(begin, end) ;
23 mergeSortTo(begin, end, begin, temp.begin()) ;
24 return ;
25 }

Figure 5: the mergeSort code

The recursive case in lines 53–61 is the most complicated. The main
trick is to reverse the roles of temp and to in the recursive calls so that the
data is sorted to temp. We use the iterators temp2 and temp3 generated
by the recursive calls to capture the sorted ranges that we wish to merge.
We then merge those ranges to to and return a pointer to one beyond the
region of to that we filled.

2.3 The middleOf function

Figure 4 shows the coding of middleOf. The advance and distance func-
tions are from the STL. For iterators that are random access the code be-
comes middle += (e-b)/2 . Note that we cannot write middle = (e+b)/2;,
even with pointers.

October 22, 2007 6

2.4 A driver algorithm

It may not be clear how to get the recursive mergeSortTo algorithm started.
We show how to do this in Figure 5. The essence of this algorithm is to
create a vector for temporary storage, which is done on line 23. All of the
STL containers have this sort of two iterator argument constructor, which
creates a copy of the range described by the iterators.

Line 21 appears quite tricky. Its purpose is to define elt_t to be the
type of the things that are stored in the range defined by [begin,end).
Because iterators might just be pointers, there is no direct way to ask
Iterator what it points to. However, the STL <iterator> header pro-
vides a templated class std::iterator<...> that does the right thing.
It, in turn, contains a number of typedefs that the programmer can use,
including value_type, which is the type of things that its template argu-
ment points at.

The other tricky feature of line 21 is the presence of the typename. This
is required, because without it we cannot tell at the time that we are read-
ing the source code whether std::iterator_traits<Iterator>::value_type
is

1. a public member typename, or
2. a publici member variable.

The compiler always follows the rule that in circumstances like this, if it
cannot tell, it assumes that the thing in question is a value, not a type. To
tell the compiler otherwise, we insert the word typename just before the
expression.

3 Testing

In this section we present some simple code for testing our algorithm.
The code shown in Figure 6 gives a simple true-false test function that
tests whether or not the algorithm correctly sorts a randomly shuffled
vector of integers from 0 to i.

Finally, Figure 7 shows a simple way to call the test-function.

October 22, 2007 7

27 bool test(int i)
28 {
29 assert(i>=0) ;
30 std::vector<int> v ;
31 for(int j=0;j<i;++j)
32 {
33 v.push_back(j) ;
34 }
35 std::random_shuffle(v.begin(), v.end()) ;
36 mergeSort(v.begin(), v.end()) ;
37 return isSorted(v.begin(), v.end()) ;
38 }

Figure 6: the test function

40 int main()
41 {
42 unsigned long seed(time(0)) ;
43 srand(seed) ;
44 srand48(seed) ;
45 std::cout << "seed is " << seed
46 << "; first rand() is " << rand()
47 << "; first lrand48() is " << lrand48()
48 << "." << std::endl ;
49

50

51 bool everythingsOK = test(0) && test(1) && test(2) && test(10000) ;
52 std::cout << (everythingsOK ? "tests pass." : "tests fail.")
53 << std::endl ;
54 return (everythingsOK ? 0 : 100) ;
55 }

Figure 7: the main function

October 22, 2007 8

Worst-Case Time: Θ(n log n)
Average-Case Time: Θ(n log n)

Extra Storage: Θ(n)
Stable: yes

Other characteristics: Works very well with lists, where extra stor-
age is not needed.

Figure 8: the Merge Sort Report Card

4 Stable Sorting

One subtle but important question that one can ask about a sorting algo-
rithm is whether or not it keeps equal elements in their original order. If
it does we say that the algorithm is stable. This is illustrated in Figures 9–
11. Figure 11 is not a stable sorting of the data in Figure 9 because the
two “1”s have swapped order. Stable sorting is important because it gives
a way of combining multiple sorts.

Merge-sort is the only fast sorting algorithm that we shall study that
is inheritently stable. It is stable because merging can be made stable, and
the base cases of merge sort are clearly stable.

5 The Merge Sort Report Card

We shall be studying various different sorting algorithms. In order to
compare them we shall give them each a report card. The report card for
merge sort is shown in Figure 8.

Note the list of questions answered by the report card. We shall ask
these questions about each of the other sorting algorithms too.

Here are some justifications of the data given. The stability of merge
sort is discussed above. The extra storage is obvious from the algorithm.

The timings are perhaps the most complex. However, when you look
at both the mergeSortTo and the mergeRanges algorithms, it should
be clear that the overall running time does not depend on the data, only
on the amount of it. (mergeRanges runs a little bit faster when the two

October 22, 2007 9

13122

Figure 9: Initial data.

32211

Figure 10: Data from Figure 9 stably-sorted.

32211

Note that the order of the two “1”s has been reversed.

Figure 11: Data from Figure 9 unstably-sorted.

October 22, 2007 10

ranges do not overlap, but the overall running time is still proportional
to the sum of the sizes.)

The recursive mergeSortTo function has a running time that looks
very much like that of the third subsequence sum algorithm. Reading the
code from top to bottom, we get

T(n) =

c0 if n = 0,
c1 if n = 1,
T(bn/2c) + T(dn/2e) + c2n otherwise.

(1)

By the same kinds of telescoping sum arguments as before we T(n) =
Θ(n log n). Alternately, we can ask each element of the array what it sees;
and the answer is that it sees a merge of total size 2, . . . , n/2, n, that is
≈ log2 n different merges. As each element takes Θ(1) work per merge,
this gives Θ(1 × n × log2 n) running time.

October 22, 2007 11

