
CPSC200 Class - October 25/07

Robert Pringle

October 24, 2007

Robert Pringle CPSC200 Class - October 25/07



Sorting Algorithms and Considerations

I There are a number of sorting algorithms available, examples
of these include Quick Sort, Insertion Sort and Merge Sort
just to name a few.

I When considering which sorting algorithm to use you should
consider the situation in which you are using it with such
things as:

1. The time complexity (worst-case, average-case, best-case
where appropriate).

2. The storage complexity (worst-case, average-case, best-case
where appropriate).

3. The stability of the sorting algorithm.
4. Other general considerations, including special cases, for the

sorting algorithm.

I We will refer to these metrics for gauging the appropriateness
of a sorting algorithm as its Report Card.

Robert Pringle CPSC200 Class - October 25/07



Sort Stability

I Stability in a sorting algorithm refers to the ordering of equal
elements in the collection being sorted.

I Stable sorting algorithms will leave the order of equal
elements the same relative to themselves from the unsorted to
the sorted collection while unstable sorting algorithms will not
guarentee this.

Robert Pringle CPSC200 Class - October 25/07



Sort Stability Example

Consider the following unsorted list on a collection of integers
where we differentiate equals elements through bolding below we
have examples of possible results from a stable and unstable
sorting algorithm.

Unsorted Collection: 5 3 9 3 1

Stable Sorted Collection: 1 3 3 5 9

Unstable Sorted Collection: 1 3 3 5 9

Robert Pringle CPSC200 Class - October 25/07



Merge Sort

I Merge sort is a divide and conquer algorithm for sorting
collections of elements that works by dividing a collection into
smaller collections, sorting these divisions and then merging
them back together in sorted order.

I Merge sort generally requires temporary storage at least equal
to the size of the original collection in order to perform the
merge sort however it is possible to perform merge sort
without such overhead when using lists.

I Each merger in general requires a comparison of elements in
one of the collections to the other it is being merged with.

I Merge sort is generally a stable sorting algorithm (as it is
simple to make the merge step stable).

Robert Pringle CPSC200 Class - October 25/07



Merge Sort Algorithm

I The general merge sort algorithm involves the following steps:

1. Split the provided collection into two if there are enough
elements, if there are less than two elements than it can be said
the given collection is sorted and there is nothing further to do.

2. Merge sort the collections formed from the split.
3. Merge the sorted collections together to form the sorted

collection.

I Note the merge sort algorithm generally uses temporary
storage to store the intermediate results of sorting before
merging the results back into the target.

Robert Pringle CPSC200 Class - October 25/07



C++ Merge Sort Algorithm

I In the notes provided for this class you are given a merge sort
algorithm implemented with C++ and STL.

I The mergeSortTo function provided will sort the collection
starting at the iterator begin and ending at the iterator end
into a (possibly) new space specified by the iterator to and
the function itself returns an iterator one past the range where
the sorted data has been put.

I The mergeRange function takes two collections whose
beginning and ending iterators are provided the performs a
sorting merge on them into the memory space whose start is
specified by the iterator destination and returns a iterator
one past the range where the sorted data has been put.

I The middleOf function is used to find the middle point of a
collection.

Robert Pringle CPSC200 Class - October 25/07



mergeRanges Function

Robert Pringle CPSC200 Class - October 25/07



mergeSortTo Function

Robert Pringle CPSC200 Class - October 25/07



middleOf Function

Robert Pringle CPSC200 Class - October 25/07



middleOf Function

Robert Pringle CPSC200 Class - October 25/07



test Function

Robert Pringle CPSC200 Class - October 25/07



main Function

Robert Pringle CPSC200 Class - October 25/07



Merge Sort Evaluation

I You can see from looking at the merge sort algorithm that its
time and space complexity are propotional to the number of
the elements in given collection and not on the current state
of the elements in the collection (as would be the case with
insertion sort or quick sort).

Robert Pringle CPSC200 Class - October 25/07



Merge Sort Evaluation

I The time complexity of the given merge sort algorithm is the
same for the worst and the average case and is Θ(nlogn).

I Given each merge sort step we can see the time required to
perform a merge sort on a collection of size n is

T (n) =


C0, if n=0

C1, if n=1

T (bn/2c) + T (bn/2c) + C2n, otherwise
I The equation for the time required by the merge sort algorithm

is representitive of a telescoping sum that we can simply to our
complexity of Θ(nlogn)

I This can also be seen by looking at the algorithm from the
perspective of the elements, you can see the steps that are
required are the merger of 2,...,n/2 sized collections which is
equivalent to log2(n) different merges over n elements with
each merge taking a constant time giving us
Θ(1 ∗ n ∗ log2n) = Θ(nlogn).

Robert Pringle CPSC200 Class - October 25/07


