UNBC Laboratory Assignment

Computer Science 200—Fall 2005

Robust Sorting

Purpose:

To implement a high-quality ©(nlogn) [unstable] sorting algorithm.

Due Date:

This assignment is due 2006-11-17 at the beginning of class.

Tasks to Complete:

Implement an Q(n) random shuffle algorithm that completely randomly shuffles an array. (See
the Exercises at the end of Chapter 2 in Weiss). Shuffle a four element array one million
times to test for complete randomness.

Find the average time to shuffle 100 000 and 1 000 000 element arrays in order to verify O(n)-time.

Implement a three parameter version of heap sort with interface

template<class Iterator, class Predicate>
void heap_sort(Iterator begin, Iterator end, Predicate less) ;

that sorts the data with indices in the range [begin, end) according to the strict weak order less.

Implement quick_sort in a manner similar to Weiss. Add at least one more parameter to be
passed in the recursive version of the algorithm. Use the extra parameter to track the depth of
the recursion, and switch to heap sort if the depth is greater than 40.

Implement insertion_sort. Think about whether or not you want to use the sentinel element
trick.

Using the above pieces, construct a robust_sort algorithm that uses at most O(logn) extra
storage, and O(nlogn) running time, but that is as fast as quick_sort most of the time.

Test your sorting algorithms for correctness. That is, write code that verifies that your sorting
algorithm produces (a) a sorted array, and (b) an array that is a permutation of the original.

Time your sorting procedures for various different sized data collections. Think about whether
you are trying to estimate worst case time or average case time.

You must show that your actual running times are consistent with the ©-behavior for the sorting
algorithm.



UNBC CPSC 101

Helpful Hints:

If you don’t like thinking about random access iterators abstractly, you can always begin an algo-
rithm involving them with

int n = end - begin ;
Iterator data = begin ;

then write datal[i] as you would in sorting an array.

(If you wish to be technically more perfect #include <iterator> and
typedef typename std::iterator_traits<Iterator>::difference_type dist_t;

and replace int n = end - begin with dist_t n = end - begin. This will work even on
machines where the difference between pointers is a long int.)

Writing a two argument sort routine

To write a two-argument interface so that you can sort a std: :vector<double> array data with
sort(data.begin(), data.end()), you can do the following:

template<class Iterator, class Element>
inline void sort_helper(Iterator begin, Iterator end, Element ignored)
{
sort(begin, end, less<Element>()) ;
return ;
}
template<class Iterator>
void sort(Iterator begin, Iterator end)

{
if (begin!=end)
sort_helper(begin, end, *begin) ;
return;
}

A less more mysterious, but less clunky solution is to #include <iterator> and <functional>
and write

template<class Iterator>
void sort(Iterator begin, Iterator end)

{
typedef typename
std::iterator_traits<Iterator>::value_type value_t ;
sort(begin, end, std::less<value_t>) ;
return;
}

Laboratory Assignment Robust Sorting e 2



