
UNBC Laboratory Assignment
Computer Science 200—Fall 2006

Stopwatches, loops, and graphs

Purpose:

Practice. To create a timing function and use that timing function to plot the time behaviour of
various functions.

Due Date:

This assignment is due Friday, 22 September, 2006 at the beginning of class.

Hand-in Procedure:

The procedure for handing in assignments still hasn’t been finalized. However, regardless of
the procedure chosen, a complete assignment is due at the beginning of class and must contain
(a) all of the code used to create the program, (b) Makefile’s if any, (c) something showing
the output of the compilation process, and (d) test runs.

Assignment:

Stop-watches

The first part of this assignment consists of creating a StopWatch class. You are going to need the
StopWatch class in later assignments, so make sure that you create a separate StopWatch.h file,
etc.

The StopWatch class should behave like a mechanical three-button stop-watch. That is, the
interface should look something like:

class StopWatch
{public:

StopWatch() ;
// The three buttons. // and queries
StopWatch& start() ; double elapsed() const ;
StopWatch& stop() ; bool is_running() const ;
StopWatch& reset() ;

private: ...} ;

Even though you may not need it for this assignment, your stop-watch should function cor-
rectly regardless of the order in which the three buttons are pressed. Your grade depends in
part on how well you accomplish this.



UNBC CPCS 200

There is more than one notion of elapsed time for a multi-process operating system because sin-
gle processes don’t get all of the processor. What you want to measure is the elapsed CPU
time, not the elapsed wall-clock time.

The man-pages for clock and times would seem to suggest using the clock() function to obtain
the elapsed CPU-time. Unfortunately, this only gives you resolution of about 10ms, which is
much too long for many timing situations in this course.

There is another function in the standard C library that is much more appropriate: gethrvtime.
This function is declared in the old-style <sys/time.h> header. For more information see
man -s3c gethrvtime and look at /usr/include/sys/time.h.

⇒ Write and test your stop-watch program. Attempt to determine the granularity of the system
clock. gethrvtime always returns an answer that is measured in nanoseconds, but on many
systems the virtual process timer is not accurate to ±1 ns.

⇒ Use your stop-watch to determine the time behaviour of the following functions, and plot your
results on graph paper. Make sure that each of your graphs has a title, and labels, scale, and units
for each axis.

Functions to plot

• The time taken by new to perform n allocations of integers on the heap.

• The time taken by new to perform n allocations of integer arrays, each of size n.

• The time taken by delete to perform n deletions of integers allocated on the heap.

• The time taken to open a file; write n 75-character lines of nonsense, and close the
file.

• Write a function that computes

f(n) =
n∑

i=1

i∑
j=1

0.5j

i + j

and plot its running time as a function of n.

Write nicely documented, clean, organized code!

Laboratory Assignment Stopwatches, loops, and graphs • 2


