Symbol	"Think"	Value of L^{\dagger}	Formal Meaning [‡]
0	"<"	L = 0	$f(n) = O(g(n))$ but not $f(n) = \Omega(g(n))$
0	"≤"	$L < \infty$	$\exists c, n_0 [\forall n \ge n_0 [f(n) \le cg(n)]]$
Ω	"≥"	L > 0	$\exists c, n_0 [c \neq 0 \& \forall n \ge n_0 [f(n) \ge cg(n)]]$
Θ	"=".	$0 < L < \infty$	$f(n) = \mathcal{O}(g(n))$ and also $f(n) = \Omega(g(n))$

† Value of $L = \lim_{n \to \infty} f(n)/g(n)$ when it exists.

 \ddagger Formal meaning of f(n) = (g(n)).

Figure 1: Greek Notation

Asymptotic Formulæ

$$f(n) = o(g(n))$$

Casual: f is strictly smaller (faster) than g. **Definition:** f(n) = O(g(n)) but not $f(n) = \Omega(g(n))$ **Calculus:** $\lim_{n \to \infty} f(n)/g(n) = 0$

$$f(n) = O(g(n))$$

Casual: *f* is smaller (faster) than or equal to *g*. **Informal:** *f* is eventually smaller than *g* (up to a constant). **Definition:** $\exists c, n_0 \text{ such that } \forall n \ge n_0 \quad f(n) \le cg(n)$ **Calculus:** $\lim_{n \to \infty} f(n)/g(n) < \infty$

 $f(n) = \Omega(g(n))$

Casual: f is greater (slower) than or equal to g. **Informal:** f is eventually greater than g (up to a constant). **Definition:** $\exists c \neq 0, n_0 \text{ such that } \forall n \ge n_0 \quad f(n) \ge cg(n)$ **Calculus:** $\lim_{n \to \infty} f(n)/g(n) > 0$

 $f(n) = \Theta(g(n))$

Casual: f is approximately the same as g. **Definition:** $\exists c_1 \neq 0, c_2, n_0$ such that $\forall n \geq n_0 \quad c_1g(n) \leq f(n) \leq c_2g(n)$

Calculus:
$$\lim_{n \to \infty} f(n)/g(n) \in (0, \infty)$$

Usage the symbols O, o, Ω , and Θ are *not* function symbols. They should only be used "at the top level" on the right hand side of an equation. Always use parentheses with these functions.

Generic $\Theta(f(n))$ formulæ.

- If $f(n) = c \cdot g(n)$ then $f(n) = \Theta(g(n))$. Constants don't matter.
- If $f(n) = a_0 + a_1n + a_2n^2 + \dots + a_{k-1}n^{k-1} + a_kn^k$, where $a_k \neq 0$, then $f(n) = \Theta(n^k)$. Don't sweat the small stuff (polynomials).
- If g(n) = o(f(n)) then $f(n) + g(n) = \Theta(f(n))$. Don't sweat the small stuff (general).
- $f(n) + g(n) = \Theta(\max(f(n), g(n)))$. [This one comes up over and over in algorithm analysis.]
- If f(n) = Θ((log n)) and g(n) = Θ(n^ε) (where ε > 0) then f(n) = o(g(n)). Logarithms are smaller than polynomials.
- If $f(n) = \Theta(n^k)$ and $g(n) = \Theta(c^n)$ (where c > 1) then f(n) = o(g(n)). Polynomials are smaller than exponential functions.

Logarithms.

- If $f(n) \to +\infty$ and $g(n) \to +\infty$ and $f(n) = \Theta(g(n))$ then $\log f(n) = \Theta(\log g(n))$. (N.B. the converse does not hold!) logs preserve Θ .
- [Charlie's Rule] If $f(n) \to +\infty$ and $g(n) \to +\infty$ and $\lim_{n\to\infty} \frac{\log f(n)}{\log g(n)} < 1$ then f(n) = o(g(n)).¹ This rule helps a lot in dealing with odd functions like $n^{1/(\log \log n)}$.
- $\log_a n = \Theta(\log_b n)$. The base doesn't matter.

Factorials.

Stirling's formula $n! = \sqrt{2\pi n} \left(\frac{n}{e}\right)^n \left(1 + \frac{1}{12n} + \frac{1}{288n^2} + g(n)\right)$ where $g(n) = o(n^{-2})$. Consequently $\log n! = \Theta(n \log n)$.

 $^{^1\}mathrm{I}$ know about this nice result from Charlie Obimbo, who presented it at WCCCE '03.