
CPSC 200 Fall 2002
Midterm I— 7 October 2002

Name(Printed) :

Signature :

StudentNumber :

BETA BIRD BLOT BOOK BREW CAMP

INCH IRIS ISLE KERN KILN KITE

MANX MESH MINK MOTH MOVE MUSK

PARK PINE POET RAFT REED RING

RUBY RUFF SEAM SEED SHOP SILK

SINE SNIP SOAP STUB TASK TAXI

WICK WOLF WRIT YARD

Question Score

1 /5

2 /4

3 /3

4 /3

5 /6

6 /8

7 /12

8 /4

9 /3

10 /2

Total /50

• Write the word circled above on each page of your exam. Do not put
any other identifying marks on any page of your exam. Failure to put
the circled word on a page of your exam may result in no marks being
awarded for that page.

• Read each question carefully. Ask yourself what the point of the question

is. Check to make sure that you have answered the question asked.

• This is a 50 minute exam. This exam contains 7 pages of questions
not including this cover page. Make sure that you have all of them.

• Answer all questions on the exam sheet. If you do some of your work
on the back of a page, clearly indicate to the marker what work corre-
sponds with which question.

• Partial marks shall be awarded for clearly identified work.

• Non-programmable calculators are allowed.

• This exam counts as 20% of your total grade. There are 50 points
total on the exam.



UNBC CPSC 200 Identifier:

True False

(1each) 1. Indicate whether or not the following statements are true or false by circling
the appropriate word. No marks shall be awarded if the indication is in any
way ambiguous.

(a) log
2
(n) = Θ(log

10
(n)). TRUE FALSE

(b) In order to find the maximum subsequence of an array of size n, the
maximum subsequence sum algorithm 3 (the recursive algorithm) uses
Θ(n log n) calls. TRUE FALSE

(c) Tail call optimization is primarily useful because it makes tail-recursive
algorithms faster. TRUE FALSE

(d) The fastest subsequence sum algorithm is o(n log n).
TRUE FALSE

(e) log(n!) = o(log(nn)). TRUE FALSE

Asymptotic Analysis

(4) 2. Suppose that lim
n→∞

f(n)/g(n) either exists or goes to +∞. Match up the

following statements:
A. f(n) = O(g(n)) (a) lim

n→∞

f(n)/g(n) = 0

B. f(n) = Ω(g(n)) (b) 0 ≤ lim
n→∞

f(n)/g(n) < +∞

C. f(n) = Θ(g(n)) (c) 0 < lim
n→∞

f(n)/g(n) < +∞

D. f(n) = o(g(n)) (d) 0 < lim
n→∞

f(n)/g(n) ≤ +∞

A. matches . B. matches . C. matches .

D. matches .

(3) 3. Consider the following functions of n: • 16 n+5 • (1.01)n
• n(log n)2

• 300+
log

2
n • nn and • n2 . List these in order of growth, from slowest growing to

fastest growing.



UNBC CPSC 200 Identifier:

(3) 4. Consider the following functions of n: • n log n • n(log n)2
• n(log n2)

• log(n!) • n2 and • n2/(log n) . State which, if any, of these functions
are Θ-equivalent to other functions in the list and what the equivalences are.

(2) 5. (a) Write down the formal definition (not the limit definition) for f(n) =

O(g(n)).

(b) Prove, using the formal definitions, that if f(n) = O(g(n)) then f(n) =(4)

O((1 − 1

n
)g(n)).

Variants and Invariants

6. This question refers in part to the code in Figure 1.



UNBC CPSC 200 Identifier:

Figure 1: Another isSorted function (for Question 6).

// isSorted -- return true if v is sorted.

1 bool isSorted(const vector<string>& v)

2 {

3 bool sorted = true ;

4 for(int i=0,e=v.size()-1;sorted&&i<e;++i)

5 {

6 sorted = sorted && (v[i] <= v[i+1]) ;

7 }

8 return sorted ;

9 }

(2) (a) What is a loop variant?

(b) What is a loop variant for the loop in the code shown in Figure 1?(2)

(c) What is a loop invariant?(2)

(d) What is a non-trivial loop invariant for the code shown in Figure 1?(2)



UNBC CPSC 200 Identifier:

Figure 2: The isSorted function.

// isSorted -- return true if v is sorted.

#include "isSorted.h"

bool isSorted(const vector<string>& v)

{ return isSorted(v, 0, v.size()) ; }

bool isSorted(const vector<string>& v,

int left, int size)

{

if (size<2)

return true ;

int newsize = size/2 ;

int middle = left + newsize ;

return (v[middle-1] <= v[middle])

&& isSorted(v,left,newsize)

&& isSorted(v,middle,size-newsize) ;

}

Recursion

7. This question refers to the code in Figure 2.

(2) (a) What are the base cases of the 3-argument version of isSorted? Are
the base cases coded correctly?

(b) State what else you must check in order to check the correctness of a(3)



UNBC CPSC 200 Identifier:

recursive algorithm. Is this algorithm correct as written?

(c) Let T (n) be the worst-case time for the 4-argument find function,(1)
where n = size. Explain why T (n) is given by the equations

T (0) = c1 T (1) = c1

T (n) = c2 + 2T (n/2) for n ≥ 2.

(d) Use telescoping sums to get a Θ-estimate for T (n).(2)

(e) Estimate (to Θ) the worst-case space usage of isSorted.(2)



UNBC CPSC 200 Identifier:

(f) Is the best-case time for isSorted Ω(n)? Why or why not?(2)

Sorting

(4) 8. Number

of items

time (s)

5 000 0.44s
10 000 1.7 s
15 000 3.8 s
20 000 6.7 s

A user implementing insertion sort and ob-
serves the average run times shown to the left.
Do the times, and in particular the ratio of the
times, seem reasonable to you?

(3) 9. As a function of n, how many inversions are there in the list?

[3, 2, 1, 6, 5, 4, 9, 8, 7, . . . , 3n, 3n − 1, 3n − 2]

As a function of n what kind of running-time would you expect from



UNBC CPSC 200 Identifier:

insertion sort on the above array?

(1) 10. (a) Define what it means for a sort to be stable.

(b) Why is stability a useful property?(1)


