
CPSC 200 Fall 2001
Midterm I—03 October 2001

Name(Printed) :

Signature :

StudentNumber :

• Write the word circled above on each page of your exam. Do not put
any other identifying marks on any page of your exam. Failure to put
the circled word on a page of your exam may result in no marks being
awarded for that page.

• Read each question carefully. Ask yourself what the point of the question

is. Check to make sure that you have answered the question asked.

• This is a 50 minute exam. This exam contains 8 pages of questions
not including this cover page. Make sure that you have all of them.

• Answer all questions on the exam sheet. If you do some of your work
on the back of a page, clearly indicate to the marker what work corre-
sponds with which question.

• Partial marks shall be awarded for clearly identified work.

• This exam counts as 20% of your total grade. There are 50 points
total on the exam.

ACRE AREA BALE BAND BARD BASS

BETA BIRD BLOT BOOK BREW CAMP

CHIP CLAN COAT COIL CORN CROW

CURL DARK DEER DOSE DROP DUCK

DUSK FARE FILM FLAX GAZE GIFT

GOLD GULF HINT HORN HULL IBOU

INCH IRIS ISLE KERN KILN KITE

LANE LARK LENS LOFT LURE MALT

MANX MESH MINK MOTH MOVE MUSK

NAVY NEWT NOON OATS OBOE OPAL

PARK PINE POET RAFT REED RING

RUBY RUFF SEAM SEED SHOP SILK

SINE SNIP SOAP STUB TASK TAXI

TEAM TELL TEXT TIDE TILT TOIL

TOME TOUR TURN VANE VISA WALL

WICK WOLF WRIT YARD



UNBC CPSC 200 Identifier:

Sums

∑n

i=1
i = n(n + 1)/2,

∑n

i=1
i2 = (n + 1)3/3 − (n + 1)2/2 + (n + 1)/6,

∑n

i=1
i3 = (n + 1)4/4 − (n + 1)3/2 + (n + 1)2/4 =

(

∑n

i=1
i
)2

,
∑n

i=1
2i = 2n+1

− 1.

Logarithms and Exponential

ax = y ⇔ x = loga y

log asbt = s log a + t log b, (xa)s
·
(

xb
)t

= xas+bt

in particular log ab = log a + log b, log a/b = log a− log b, log as = s log a. To
change from logarithms base a to logarithms base b use

logb x =
loga x

loga b
.

Factorials

n! = n · (n − 1)! =

n
∏

i=1

i 5! = 5 · 4 · 3 · 2 · 1 = 120.

03 October 2001

Midterm I
page 1 of 8



UNBC CPSC 200 Identifier:

True-False

Circle the best answer. No marks shall be awarded for questions where it is
not clear which answer is circled. If you provide a reason for your answer it
may count for part marks.

(1) 1. One of the o(N log N) algorithms for the maximum-subsequence-sum prob-
lem uses recursion. TRUE FALSE

(1) 2. If f(n) = o(g(n)) then it is necessarily true that f(n) = O(g(n)).
TRUE FALSE

(1) 3. n! = o(ne) TRUE FALSE

(1) 4. In order to be able to produce machine-code to call a non-templated function
the compiler must be able to see the function definition (body).

TRUE FALSE

(1) 5. n! = o(nn) TRUE FALSE

Templates

6. Normal software development practice when using C++ is to separate each
module into its interface and implementation parts, which are then stored in
separate .h- and .cpp-file. The .cpp are then compiled to create an object
file. Some current C++ compilers cannot handle templates that are written
this way.

(a) Give one strategy for dealing with templates in .h and .cpp files that
works with most compilers.(2)

(b) Why does your strategy work?(2)

03 October 2001

Midterm I
page 2 of 8



UNBC CPSC 200 Identifier:

(3) 7. (a) Write a templated findMinimum function that takes a vector of objects
and returns the value of the smallest item.

(b) Someone who uses your faunction to test whether a vector<char*>(1)
object is sorted will likely be surprised by the result. Why?

(c) Show how to fix this problem.(2)

Asymptotic Analysis

8. Consider the following functions of n

03 October 2001

Midterm I
page 3 of 8



UNBC CPSC 200 Identifier:

• 1.05n,

• n2,

• n(7/6),

• 3n − 2,

• n + 5,

• log n,

• n log n, and

•
(

n
2

)

(a) List these in order of growth, from slowest growing to fastest growing.(3)

(b) Indicate which of these are “Θ”-equivalent?(1)

(c) Where would log2 n! fit into the above list?(1)

(3) 9. Write down the formal definitions for:

(a) f(n) = o(g(n))

(b) f(n) = O(g(n))

(5) 10. Use the formal definition of g(n) = Ω(f(n)) and mathematical induction to
show that n! = Ω(5n). [Hint: What would make a good n0?]

03 October 2001

Midterm I
page 4 of 8



UNBC CPSC 200 Identifier:

(4) 11. Suppose that lim
n→∞

f(n)/g(n) either exists or goes to +∞. Match up the

following statements:
A. f(n) = O(g(n)) (a) lim

n→∞

f(n)/g(n) = 0

B. f(n) = Ω(g(n)) (b) 0 ≤ lim
n→∞

f(n)/g(n) < +∞

C. f(n) = Θ(g(n)) (c) 0 < lim
n→∞

f(n)/g(n) < +∞

D. f(n) = o(g(n)) (d) 0 < lim
n→∞

f(n)/g(n) ≤ +∞

A. matches . B. matches . C. matches .

D. matches .

(4) 12. How many times longer do you expect it to take to sort 1000000 elements
than 1000 elements

(a) when using a Θ(n log n) method (like heap-sort),

(b) when using a Θ(n(4/3)) method (like a variant of Shell sort).

13. The function shown in Figure 1 takes a sorted array of positive doubles called
data of size size, and returns true if and only if the sum of the entries in
data is greater than or equal to 1.

(2) (a) Give a Θ-estimate of the worst-case running time of this code.

(b) Give a Θ-estimate of the best-case running time of your algorithm.(2)

03 October 2001

Midterm I
page 5 of 8



UNBC CPSC 200 Identifier:

bool sumAtLeast1(double data[], int size)

{

double goal = 1.0 ;

int i = 0 ;

while (i<size && goal>(size-i)*data[i])

{

goal -= data[i] ;

++i ;

}

return (i<size) ;

}

Figure 1: Code for question 13

(c) Write down a useful loop invariant for the loop in this code.(2)

(d) Write down a useful loop variant for the loop in this code.(2)

14. The code shown in Figure 2 gives a recursive algorithm to search an ordered
vector of double values for the index of the smallest location whose value
exceeds value.

(2) (a) By examining the code which seems like the most likely equation for
the running time T (n) of upper_bound(vec,value,0,n)?

i. T (n) = c1 + c2n + 2T (n/2)

ii. T (n) = c1 + c2n + T (n/2)

iii. T (n) = c1 + 2T (n/2)

iv. T (n) = c1 + T (n/2)

Circle the roman numeral of your choice. Justify your decision.

03 October 2001

Midterm I
page 6 of 8



UNBC CPSC 200 Identifier:

#include "upper_bound.h"

// upper_bound assumes that vec is sorted in increasing order

// returns the smallest I, lower<=I<high such that value<vec[I]

// returns high if no such I exists. We presume high<=vec.size().

int

upper_bound(vector<double> const& vec, double value,

int lower, int high)

{

if (lower==high)

return high ;

int middle = (lower+high) /2 ;

int answer ;

if (vec[middle]>value)

answer = upper_bound(vec, value, lower, middle) ;

else

answer = upper_bound(vec,value, middle+1,high) ;

return answer ;

}

Figure 2: Code for question 14-b.

(b) Use telescoping sums to find a Θ-estimate for T (n)(4)

03 October 2001

Midterm I
page 7 of 8



UNBC CPSC 200 Identifier:

Question Score
1 /1
2 /1
3 /1
4 /1
5 /1
6 /4
7 /6
8 /5
9 /3

10 /5
11 /4
12 /4
13 /8
14 /6

Total /50

03 October 2001

Midterm I
page 8 of 8


