
UNBC CPSC 141 Homework Fall 2006

Review questions

1. Compute the following:

(a) d−13/5e

(b) −d−b−πce

(c)
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i=1

( 3∑
j=1

i

)

(d)

( 13∑
i=1

i

)
−

( 12∑
i=1

i

)
(e)

⌊ 8∑
i=1

π

⌋
−

8∑
i=1

⌊
π
⌋

(f) Compute the greatest common divisor of

866313186631319096185 and

866313186631310433054

Show your work. (With a little patience it is possible to do this
with pencil and paper alone.)

(g) Compute the greatest common divisor of

2113400519 and 2400319511

Show your work.

(h) Compute the least common multiple of

2113400519 and 2400319511

Show your work.

2. Create a truth table that demonstrates the validity of the “Law of the
Syllogism” inference rule.

3. How many functions are there from ∅ to { a }?

4. How many functions are there from { a } to ∅?

5. How many relations are there between { a } and ∅?

6. Explain why { ∅ } cannot be a binary relation.
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Figure 1: Puddle Diagram #1

7. Explain why ∅ is a binary relation.

8. Compute the inverse of the function shown in Figure 1.

9. Given the sets A = { a, b, c } and B = { 1, 2, 3, 4 }.

(a) How many one-to-one functions are there from A to B?

(b) How many onto functions are there from A to B?

(c) How many one-to-one functions are there from B to A?

(d) Give an example of an onto function from B to A.

10. Which of the following statements are true?

(a) ¬∀x[p(x) ↓ q(x)] ⇔ (∃x p(x)) ↓ (∃x q(x))

(b) ¬∀x[p(x) ↑ q(x)] ⇔ (∃x p(x)) ↑ (∃x q(x))

(c) ¬∀x[p(x) ↓ q(x)] ⇔ (∀x¬p(x)) ↑ (∀¬xq(x))

(d) ¬∀x[p(x) ↓ q(x)] ⇔ (∃x p(x)) ↑ (∃x q(x))

11. All of the following statements are true, but three are true by definition,
whereas the fourth requires the use double negation law (¬ ¬ p ⇔ p)
to deduce. Circle the letter beside statement that requires the double
negation law:
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(a) The inverse of the converse is the contrapositive.

(b) The inverse of the contrapositive is the converse.

(c) The converse of the inverse is the contrapositive.

(d) The contrapositive of the converse is the inverse.

12. Prove that
n−1∑
i=0

i

3i
=

3

4

(
1− 2n + 1

3n

)
. (‡)

13. Consider the functions from to defined by

(a) f(x) = (x− 1)(x + 1)x

(b) f(x) = ex

(c) f(x) = (ex − e−x)/2

(d) f(x) = (ex + e−x)/2

Which of these functions are one to one? Which of these functions are
onto?

14. (a) In this question the universe of discourse (set of allowable substi-
tutions) is people living in Prince George.

φ(x, y) ⇔ x is a friend of y ⇔ y has x as a friend.

r(x) ⇔ x speaks Russian.

s(x) ⇔ x is a student.

t(x) ⇔ x reads Tolkien.

Use the letters before the mathematical formulas to fill in the
blanks before English language statements in Figure 2 on the fol-
lowing page. Some mathematical formulas do not correspond to
any of the English language statements.

(b) Translate the unmatched formulæ into English.

15. Consider the finite state machine shown in Figure 3.

(a) What is the input alphabet?

(b) What is the output alphabet?

(c) What are the states of the machine?

(d) For the input “1212012120”, what is the output?
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No Russian-speaking student
reads Tolkien.

Every Russian-speaking per-
son who reads Tolkien is a student.

Every student has a Russian-
speaking friend.

Every Russian-speaking stu-
dent has a friend.

There is a Russian-speaking
student who has no friends who
read Tolkien.

Every student is a friend of
someone who does not read Tolkien.

Every person who speaks Rus-
sian reads Tolkien.

Every friend of a student reads
Tolkien.

A. ∃x[r(x)→ s(x)]

B. ∀x ∃y[φ(x, y) ∧ s(y)→ t(x)]

C. ∀x[r(x) ∧ t(x)→ s(x)]

D. ∀x ∃y[s(x) ∧ φ(x, y) ∧ ¬t(y)]

E. ∀x[s(x)→∃y[r(y) ∧ φ(x, y)]]

F. ∀x[r(x)→ t(x)]

G. ∀x ∃y[r(x) ∧ s(x)→ φ(x, y)]

H. ¬∃x[r(x) ∧ s(x)]

I. ∃x[s(x) ∧ ∀y[φ(x, y)→¬t(y)]]

J. ∀x[s(x) ∧ ∃y[r(y)→ φ(x, y)]]

K. ∃x[s(x) ∧ ∀y{φ(x, y) ∧ t(y)}]

L. ∃x ∃y[s(x) ∧ r(y) ∧ ¬φ(x, y)]

Figure 2: Statements and formulæ for Question 14.
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Figure 3: Finite State Machine


