
Memory Diagrams — java

Winter 2023

version 1.0

These notes are being created in conjunction with the teaching of
cpsc 101 in the Winter 2023 term at the University of Northern British
Columbia.

These notes are a work in progress, and copyright belongs exclusively
to David Casperson.

Contents

1 Architecture 2
1.1 Physical Components . 2

1.1.1 Buses . 2

1.2 The OS View of Memory . 4

2 RAM, Boxes and Arrows 4
2.1 Random Access Memeory . 4

2.2 Boxes for Primitive Types . 6

2.3 re-assignment . 8

2.4 Arrays and Pointers . 8

2.5 Objects and Pointers . 11

2.6 Pictures of Objects . 13

3 Memory Regions in a Java Program 14
3.1 Lifetime . 14

3.2 The stack . 15

3.3 Stack frames . 15

3.4 The Heap . 19

3.5 Quadrant diagrams . 20

3.6 Code memory . 20

3.7 Static (once) memory . 22

January 5, 2023 1

4 To Come 22

1 Architecture

1.1 Physical Components

A typical computer can be decomposed into a number of kinds of sub-
systems: input/outout (I/O) devices, permanent storage, the CPU(s) and
ALU(s), and random access memory (RAM), all inter-connected by infor-
mation transfer buses.

I/O devices include things like cameras, keyboards, touch-pads, touch-
sensitive screens, and the like.

Permanent storage means storage that remains even if you re-boot
your computer. It typically manifests as files and directories. Verrrry
approximately (depending on the decade) it is 1000 times larger and 1000

times slower than random access memory.
The CPU and ALU are where decision making, instruction interpret-

tation, arithmetic and logic happens. These typically have tiny pieces of
memory called registers.

Random access memory is characterized by being fast regardless of the
order in which it is access, and non-permanent. On modern computers
the situation is complicated by cache memory which is even faster than
RAM buth much small, and which sits between the CPU and RAM.

1.1.1 Buses

The various subsystems are connected by buses, which transport informa-
tion. Typically, there are three kinds of buses:

1. Data buses, which carry the the actual information being moved
between components;

2. Address buses, which say where the information is coming from or
going to, and

3. Control buses, which determine what is happening.

January 5, 2023 2

Memory

Permanent Storage

CPU and ALU

I/O devices

bu
se

s

"Computer"

Networks

bu
se

s
bu

se
s

new FileWriter("file.txt")
;

System.out.println(“hello”);

Figure 1: Physical hardware subsystems

January 5, 2023 3

1.2 The OS View of Memory

Applications and other user programs access physical hardware through
the operating system. The operating system ensures the orderly behaviuor
of multiple user processes.

Common operating systems include Linux, Mac OS, and various Mi-
crosoft products.

The operating system gives each program the illusion of having its
own random access memory space that is completely disconnected from
other running programs. See Figure 2.

2 RAM, Boxes and Arrows

From now on, we take a Java program point of view. That is, we (mainly)
ignore the operating system. Some physical subsystems are accessed
through appropriate Java libraries. Simple input and output typically
happens through System.in, System.out, and System.err. Permanent
storage is typically access through the java.io classes like InputStream

and FileWriter . The CPU/ALU is implictly involved in executing all
Java code. Pieces of code like arithmetic operators (e.g., +, %, |) and
control statements (e.g., return, for-loops), directly involve use of the
CPU/ALU.

Random access memory as seen by Java is typically through variables.
The rest of this document is about random access mmeory (RAM).

2.1 Random Access Memeory

Modern computers use a von Newcommand architecture, an architecture
first proposed by John von Heumann. A key feature of this architecture
is that machine language instructions (that tell the CPU what to do) are
stored in the same memory as numbers and text and video images.

In other words, random access memory is a sequence of boxes with
no pre-determined purpose. Typically the smallest sized box to have its
own address is an 8-bit byte.

January 5, 2023 4

OS Memory — Logical view

Program 1 Program 2 Program 3
Programs

File 1 Keyboard
driver
buffer

CD Rom
transfer
area

Memory Mapped devices and files

Other Operating System specific memory

Figure 2: OS view of memory

January 5, 2023 5

In a von Neumann architecture, the meaning of the contents of a box
depend on the mechine instructions that use it. See Figure 3. In particular,
a region of memory might store a string of characters at one time, and
nachine instructions later.

Program Memory — Quasi-Physical view

......

......

Address 0xFFFFFFFF 0x21

0x22Address 0xFFFFFFFE

0x22Address 0x00000001

Address 0x00000000 0x37

Figure 3: Memory as a sequence of addressable boxes

However, a programming language like Java imposes rules on how
memory is used, and a picture like Figure 3 is not particularly useful.

2.2 Boxes for Primitive Types

Instead we draw boxes (and sometimes clouds) to represent a region of
memory that is used for one purpose. For intance, a Java statement like

int x = 0x01021304; // 16911108

might be represented as shown in Figure 4 or Figure 5 (depending on
how the machine stores multi-byte integers). However, Figure 6 gives a
representation more suited to our purposes. Note that Figure 6 does not
show the precise byte size of the object, nor its exact memory location,

January 5, 2023 6

int y = 0x01021304 — big endian -Physical view

Address 0xbe65fdf0 0x04

Address 0xbe65fdf3 0x01

Address 0xbe65fdf2 0x02

......

0x13Address 0xbe65fdf1

... ...

Figure 4: Assignment (big-endian)

int y = 0x01021304 — little endian -Physical view

Address 0xbe65fdf0 0x01

Address 0xbe65fdf3 0x04

Address 0xbe65fdf2 0x13

......

0x02Address 0xbe65fdf1

... ...

Figure 5: Assignment (little-endian)

int y = 0x01021304 — Logical view

16911108

y

Figure 6: Assignment (logical view)

January 5, 2023 7

and it depicts the value in a human-readable format. Also note that we
put variable name on the picture, although the actual variable name is
not likely known at runtime.

This particular example used the int type. We use the same conven-
tion for all of the primitive types (boolean, byte, char, double, float,
int, long, short). Note that in Java each box has a fixed type. That is, the
following code is illegal:

int x = 16911108;

x = false ;

In Java, once a box is created, it serves a fixed purpose (has a fixed type)
during its lifetime.

We say that Java is a statically typed language.

2.3 re-assignment

The statements “int x=5” and “x=5” look quite similar but differ in one
important point; the former tells the compiler to ensure that there is stor-
age for the for the variable, and then give it an initial value; whereas the
latter modifies an existing value. We know that

1 final int x = 5 ;

2 x = 5 ;

is illegal. In order to be clear, we will try to refer to the first kind of
assignment as initialization, and the second as re-assignment.

In Java, re-assignment always means modifying the contents of ex-
actly one variable box. (In C/C++ assignment can cause the copying of
arbitrarily large chunks of memory.)

2.4 Arrays and Pointers

All non-primitive types in Java are objects, including arrays. However,
arrays are sufficiently special that we treat them separately from other
objects.

January 5, 2023 8

false

false

false

false

false

5
length

Figure 7: Array obejct created by “new boolean[5]”

false
false
false
false
false

5
length

xx

Figure 8: After executing “boolean [] xx = new boolean[5]”

January 5, 2023 9

Unlike with primitive types, we need to be very careful with arrays to
distinguish between array variables and array objects. Let us start with
the latter. Array objects are created by evaluating expressions of the form

new type [n].

where n is an expression that evaluates to a non-negative integer. The
effect of executing “new boolean[5]” is to create the object shown in Fig-
ure 7. It contains 5 identical slots for storing boolean values, and infor-
mation about its size. The value of the expression “new boolean[5]” is the
memory address of the array object it creates. This value can be stored in
an array variable.

An array variable, for instance, boolean [] xx, is a fixed size memory
box that contains either null or the memory address of an array object of
the same type. When we execute code like

boolean [] xx = new boolean [5] ;

we get a memory picture as showin in Figure 8. A memory address
as data is called a pointer (C/C++) or reference (Java). We draw this as a
an arrow whose tail is at the location storing the memory address, and
whose head points to the memory location in question.

Consider the code

1 boolean [] xx = new boolean [5] ;

2 boolean [] yy = xx ;

3 int [] zz = xx ; // compile time error

This code illustrates two points

• Creation of array variables is logical independet from the creation
of array objects.

• Array variables (and pointers and references in general) also have
types that must be respected.

The memory picture after line 2 is shown in Figure 9. An important point
here is that although assignment to xx does not affect yy, assignment to
the object pointed at by xx does affect yy.

January 5, 2023 10

false
false
false
false
false

5
length

xx

yy

Figure 9: Two variables: one object

4 xx[2] = true;

5 System.out.println("yy[2] is "+yy[2]);

shows that yy[2] is now true. However, modifying the variable xx does
not affect the object that yy is pointing to.

6 xx = new boolean[12] ; // re-assignment

7 System.out.println("yy[2] is "+yy[2]); // no change here.

+ Question 1. Draw a memory picture explaining what is happening.

2.5 Objects and Pointers

As with array types, we need to be careful to distinguish between ob-
ject variables and objects themselves. (Non-array) objects are created by
evaluating expressions of the form

new Type (...).

January 5, 2023 11

?s

Figure 10: After executing “Scanner s = new Scanner(r);”

where Type is a class name and “...” represents possible constructor
arguments. Suppose that r is a variable of type java.io.Reader. The
effect of executing “new Scanner(r)” is to

1. allocate memory space for a java.util.Scanner object;
2. call the constructor function java.util.Scanner.Scanner(Readable

x) with value r, which
3. initializes the member variables inside the Scanner object.

The value of the expression “new Scanner(r)” is the memory address of
the object created. See Figure 10. In the case of the java.util.Scanner

class, we don’t what is contained inside the object because the member
variables are all private and undocumented.

The actual boxes inside an object correspond to the non-static member
variables of its class. For instance, if we have

Time1.java
public class Time1 {

public final static short SECONDS_PER_MINUTE=60;

private int mySecond;

public int myMinute; // ewww!!

private int myHour;

public Time1() { myHour=myMinute=mySecond=3;}

January 5, 2023 12

t

myHour
3

myMinute

3

mySecond

3

Figure 11: After executing “Time1 t = new Time1();”

// ... member functions

}

and we execute elesewhere “Time1 t=new Time1()”, we get the result
shown in Figure 11. Note that:

1. static member variables are not part of the object created.
2. Methods (static or not) are not part of the object created.
3. Access keywords (public, private, protect) do not appear in run-

time memory. (They do affect compile time; illegally attempting to
access a private member variable results in a compile-time error.)

+ Question 2. Continuing the above example, consder the code

1 Time1 u = t ;

2 t.myMinute = -3 ; // a good class would not allow this

3 t = null ;

and draw memory pictures showing what happens.

2.6 Pictures of Objects

In Figures 7–11 we have drawn objects as clouds. We want to emphesize
that objects are aggregates of storage lcoations. In Java every object is an

January 5, 2023 13

instance of a named class.1 Every object from the same class has the same
shape. Figuratively, htis means that we draw each object of the same class
with the same shape in a diagram. Literally, it means that each object in
the same class has the same size, and the same internal layout of storage.

People sometimes use the cookie cutter metaphor, where classes are
cookie cutters and objects are cookies. This communicates the point
that different classes may have different shaped objects, but objects from
the same class have the same shape. The metaphor also correctly sug-
gests that objects (cookies) never change shape onece they are cut (con-
structed).2

If you want a memory diagram to explicitly indicate that there are
two different classes of objects in use using non-cloud shaped cookies is
appropriate.

Also note that it is the cookies (objects) that sit on the cookie sheet
(memory diagram, heap memory), not the cookie cutter. The answer to
the question “where do classes live in memory?” is complicated.

3 Memory Regions in a Java Program

We now look in more detail at how the Java runtime organizes memory.

3.1 Lifetime

We have said that (a) in the von Neumann architecture, random access
memory has no pre-determined rôle, but, (b) in Java, a box has a fixed
type during its lifetime. We now elaborate on the idea of lifetime of a
box. As a program runs, the Java runtime allocates contiguous chunks
of random access eemory (boxes!) for some purpose. Later, when it is

1Java supports anonymous inner classes that are extensions of named interfaces or
classes and that do not have a name in the text of the program. In particular, λ-
expressions exploit the abillty to create such classes. However, even though there is
no name in the text of the program, the compiler creates a name and a corresponding
.class file. Thus, at run-time every object belongs to a particular named class.

2Although ArrayList objects may appear to be able to change size and shape, at the
memory-diagram level they don’t.

January 5, 2023 14

finished with that purpose, the runtime deallocates the box. The lifetime
of the box is the span of time between its allocation and deallocation.

During its lifetime, a box may have its contents change multiple times
(for instance, consider a loop variable), but it hever changes type. That
is, if it starts out as a box for storing double values, it is only ever used
to store double values. Sometimes it may appear that we are storing in
integer in double box (imagine “double x = 3;”). However, the quantity
that is stored in the box is always in double format.

After a box’s lifetime, the underlying memory is reclaimined, and the
next time that it is allocated it may be used for a different purpose.

In the descriptions that follow, pay attention to the lifetimes of various
kinds of storage.

3.2 The stack

The word stack has two meanings in computer science, one general, and
one more specific. In general, a stack is a data structure that contains
multiple items, but with quite restricted access. Think of a stack of plates
at a smorgasbord restaurant. Only the top of the stack is accessible.

More specifically, a stack is a region of memory used for keeping track
of variuables contained in methods. From now on we use stack in this
sense.

3.3 Stack frames

The stack (in the program memory senxe) consists of a stack (in the gen-
eral sense) of stack frames, where each stack frame corresonds corre-
sponds to a method call. A stack frame for a method m is put on the
stack when m is called. The frame is taken off the stack when the mehtod
m returns. Between the time when m is called and when it returns, it is
possible that m itself may call other methods, whose stack frames stack on
top of the frame for m. It is even possible that the method m may be called
again before it returns (we call such a mehtod recursive). That is, there
may be more than one stack frame in existence for a particular method.

A stack frame contains memory for the following:
(i) method parameters,

January 5, 2023 15

1 public static double oddThing(int n)

2 {

3 if (n%2==0) ++n ;

4 if (n==1)

5 {

6 return 1 ;

7 }

8 else

9 {

10 double t1 = oddThing(n-2) ;

11 double t2 = Math.log(t1) ;

12 double answer = n * t1 ;

13 return answer ;

14 }

15 }

Figure 12: Recursive routine

(ii) for non-static methods, the this pointer,
(iii) variables declared inside the body of the method,
(iv) temporaries, and
(v) control information.

Consider the code shown in Figure 12, and suppose that we call
oddThing(5). The stack frames look as shown in Figure 13 at various
times during execution of the code.

Note that parameters and local variables are very similar in stack
memory diagrams. The lifetime of parameters is the duration of the call;
the lifetime of a variable is from its declaration to the end of the block of
code that contains it.3 For simplicity, we often ignore the fact that some
variables are declared in a smaller block than the whole function.

3Variables declared in the “()”-part of an for-loop live until the loop is exited.

January 5, 2023 16

main

oddThing
t1

?
t2

?
answer

?
n

5

oddThing
t1

?
t2

?
answer

?
n

3

oddThing
t1

?
t2

?
answer

?
n

1

Just before executing line 6.

main

oddThing
t1

?
t2

?
answer

?
n

5

oddThing
t1
1.0

t2
0.0

answer
?

n
3

Just before executing line 12.

Figure 13: Stack diagrams

January 5, 2023 17

root1 =

(- b

- Math.sqrt

(b*b-4*a*c)

) / (2*a) ;

double t1 = b*b;

double t2 = 4*a ;

double t3 = t2*c;

double t4 = t1 - t3 ;

double t5 = Math.sqrt(t4);

double t6 = - b - t5;

double t7 = t6 / 2 ;

double t8 = t7 / a ;

root1 = t8;

Figure 14: Mathematics verseus Explicit temporaries

Temporaries are in effect variables created by the compiler. Suppoese
for instance, we change

14 {

15 double t1 = oddThing(n-2) ;

16 double t2 = Math.log(t1) ;

17 double answer = n * t1 ;

18 return answer ;

19 }

to

14 {

15 double t1 = oddThing(n-2) ;

16 double t2 = Math.log(t1) ;

17 return n * t1 ;

18 }

The quantity that we used to call answer still needs to be computed and
stored somewhere. It is quite possible that the Java compiler may create
a temporary to store it. In general, a complicated expression with lots of
nested sub-expressions can be rewritten into a sequence of assignments
involving less nested expressions. However, this is something that the
compiler can manage on its own. See Figure 14 for another example.

Control information is other information that the Java virtual machine
(JVM) needs to manage method calls and returns. In cpsc 101 we are not

January 5, 2023 18

concerned too much with what this information is, just an awareness that
it exists.

3.4 The Heap

The word heap also has two meanings in computer science. As a data
structure, a heap is a particular way to implmenent a priority queue. The
other use of heap is as a region of program memory, like the stack. There
is no connection between the data structure meaning and the region of
program memory meaning.

Memory in the stack is automatically and implicitly controlled by
method calls and returns. By contrast memory in the heap is partly un-
der the explicit control of the programmer. Executing a new expression
(whether for an array or a class object) creates a memory region in the
heap that contains that object (see Sections 2.4 and 2.5). Contained in the
memory region for an object are:

1. Slots for variables for all of the non-static member variables in its
class declaration.

2. Memory for its super-class object.

(We will discuss super class objects more when we discuss inheri-
tance. In effect an object region can be thought of as a nested Rus-
sian doll. The ooutermost doll (the actual object type), corresponds
to the class in the new-expression that created this memory region;
the innermost doll is an object of class Object type.)

3. Various pointers (that is memory addresses) pointing to other object
in the heap or in the static region. Some of these only occur in
advanced programming situations:

(a) a pointer to a class object in the static region that describes
properties common to all of the objects in this class, such as
the class name, a list of its methods, slots for all of the static

member variables in its class declaration.

(b) if the object is an object of a non-static inner class, a pointer to
the object of the surrounding class that created this object.

January 5, 2023 19

4. Note that static member variables do not have slots inside an ob-
ject. This is consisntent with each static variable occurring exactly
once in a program.

In Java only the beginning half (allocation) of an object’s lifetime is under
explicity programmer control. Objects are removed from meory by the
garbage collector when it determines that an object can no longer be used
because there are no poniters to it.

3.5 Quadrant diagrams

We have described the stack and heap regions of memory, and how to
draw diagrams for them. Before describing the remaining two regions
(the “static” region and method code memory) we dscribe how we fit
these four regions into one diagram. See Figure 15. We use a heavy
vertical and horizontal line to divide our diagram into four quadrants.
Clockwise, from the top left, these quadrants contain:

1. the stack,
2. the heap,
3. code memory, and
4. static (once) memory.

I always draw the quadrants in this order.
Typically when trying to understand how a program is using memory,

we only need to look at the top two quadrants, or sometimes, just a few
boxes for variables and a couple of objects.

3.6 Code memory

Most Java code is contained inside (non-abstract) methods inside classes.4

Each method can be uniquely identified by its full signature, which con-
4There can also be code contained in the initializers for member variables, and spe-

cific (possibly static) initialzer blocks. These are generally confusing, as the order of
their execution is not at all clear. I strongly recommend:

• not using initializer blocks.
• not using initializers in the declaration of non-static member variables (put

these in constructors instead).
The potential benefits of not repeating common code don’t justify the complexity of
code outside of methods.

January 5, 2023 20

Stack

Program Memorystatic / class Memory

Heap

main Stars::Stars Stars::print

Figure 15: Quadrant Diagram

January 5, 2023 21

sists of
• its package (e.g., java.util),
• its class name (e.g., Scanner),
• its method name (e.g., hasNext), and
• its argument pattern (e.g., (String) ot ()),

Each method contains a sequence of JVM instructions, together with in-
formation such as its maximum required stack frame size and its param-
eter pattern. Figure 15 shows how we draw method blocks.

Java code memory contains code for every method used by the pro-
gram. We can imagine the lifetime of code memory to last for the dura-
tion of the program’s execution. (Java VM code can also be loaded under
programmer control, but that’s beyond the scope of this paper.)

3.7 Static (once) memory

The remaining region of memory is characterized by its objects being
unique. Many non-Java programming languages have global variables
(variables that have top-level visibility). Language rules insist that there
be exactly one instance of such a variable in a program.

Java does not have global variables, but static member variables have
the same property. For instance, there is exactly and only one System.out

variable. Each class in a program may have zero objects (think java.lang.Math)
or many objects, but every class has a corresponding unique object of type
java.lang.Class. Through an object’s Class object one can find the ob-
ject’s class’ static member variables, and pointers to its methods.

4 To Come

TRese notes are a work in progress.
Still to be added to these notes:

1. this pointers in stack diagrams
2. How superclass constructors work
3. exotic pointers (strong, soft, weak, phantom references) and finaliz-

ers.
4. Locks and other supports for concurrency.

January 5, 2023 22

	Architecture
	Physical Components
	Buses

	The OS View of Memory

	RAM, Boxes and Arrows
	Random Access Memeory
	Boxes for Primitive Types
	re-assignment
	Arrays and Pointers
	Objects and Pointers
	Pictures of Objects

	Memory Regions in a Java Program
	Lifetime
	The stack
	Stack frames
	The Heap
	Quadrant diagrams
	Code memory
	Static (once) memory

	To Come

