
UNBC Laboratory Assignment
Computer Science 101—Winter 2023

Hints on Decoupling Models and Views

Purpose:

This handout is a note on how one can use the java.util.function.* classes to decouple
connections between a model and a view.

Implementing the changes suggested here are not required for Lab 7.

Method

The goal is to redesign the Register class from Lab 7 slightly, so that it can be connected to
pretty much anything.

The main technical trick is to use a “λ-expression” to provide the connection between the regis-
ter and anything that wants to listen to its changes. The λ-expression is passed to the Register.

• The interface that we wish to use comes from the java.util.function package:

import java.util.function.Consumer;

• Next, we want to add a private Consumer<String> sink member variable, together with
a public setRegisterListener setter (and optionally a getter). The setRegisterListener

method is somewhat like the addActionListener of buttons, et cetera. However we keep
things simple and only allow one listener.

• The sink member variable is a Consumer<String> object, so has a void accept(String s)

method. We use it to create a private utility method update

private void update() { sink.accept(getDisplayText()) ; }

Now whenever update() is called, the Register listener gets the new text to display.

• We then add the update() to the end of every behaviour that changes the Register text.

• We must make sure that Register objects always have a legitimate sink value. We can have
the constructor set it to a do-nothing value.

...

setRegisterListener((s)->{}) ;

© 2022 David Casperson. This document may be freely
copied, provided that this copyright notice is preserved.



UNBC CPSC 101

Linking the Register to something

• Suppose that we want to link a Register to JTextField that it is to display its value. We can do
this with code like

private Register myRegister ;

private JTextField myDisplay ;

...

// in wiring code

myRegister.setRegisterListener((str)->myDisplay.setText(str)) ;

Now the myDisplay variable will update whenever the myRegister variable is changed.

Review

What have we accomplished?

There is a lot less coupling. The listener (here a JTextField) knows nothing about its model.
The Register objects only rely on the general purpose java.util.function.Consumer inter-
face, and can be connected to any other component through a λ-expression.

Finally, a setRegisterListener method seems to be cohesive with the general purpose of a
Register model.

Laboratory Assignment Hints on Decoupling Models and Views • 2


