UNBC Laboratory Assignment

Computer Science 101—Winter 2023

Hints on Decoupling Models and Views

Purpose:

This handout is a note on how one can use the java.util.function.* classes to decouple
connections between a model and a view.

Implementing the changes suggested here are not required for Lab 7.

Method

The goal is to redesign the Register class from Lab 7 slightly, so that it can be connected to
pretty much anything.

The main technical trick is to use a “A-expression” to provide the connection between the regis-
ter and anything that wants to listen to its changes. The A-expression is passed to the Register.

The interface that we wish to use comes from the java.util.function package:

import java.util.function.Consumer;

Next, we want to add a private Consumer<String> sink member variable, together with
a public setRegisterListener setter (and optionally a getter). The setRegisterListener
method is somewhat like the addActionListener of buttons, et cetera. However we keep
things simple and only allow one listener.

The sink member variable is a Consumer<String> object, so has a void accept(String s)
method. We use it to create a private utility method update

private void update() { sink.accept(getDisplayText()) ; }

Now whenever update () is called, the Register listener gets the new text to display.
We then add the update () to the end of every behaviour that changes the Register text.

We must make sure that Register objects always have a legitimate sink value. We can have
the constructor set it to a do-nothing value.

setRegisterListener((s)->{}) ;

(© 2022 David Casperson. This document may be freely
copied, provided that this copyright notice is preserved.



UNBC CPSC 101

Linking the Register to something

Suppose that we want to link a Register to JTextField that it is to display its value. We can do
this with code like

private Register myRegister ;
private JTextField myDisplay ;

// in wiring code
myRegister.setRegisterListener((str)->myDisplay.setText(str)) ;

Now the myDisplay variable will update whenever the myRegister variable is changed.

Review

What have we accomplished?

There is a lot less coupling. The listener (here a JTextField) knows nothing about its model.
The Register objects only rely on the general purpose java.util.function.Consumer inter-
face, and can be connected to any other component through a A-expression.

Finally, a setRegisterListener method seems to be cohesive with the general purpose of a
Register model.

Laboratory Assignment Hints on Decoupling Models and Views o 2



