
UNBC Laboratory Assignment
Computer Science 101—Winter 2023

Time Classes

Purpose

To consolidate your understanding of methods, pre-conditions, post-conditions, and packag-
ing in the context of a simple Time class; to explore the difference between attributes and
representation; and to gain experience with interfaces and inheritance.

Outcomes

After completing this assignment, you should

• be able to code with package statements;
• explain the effect of adding a public String toString() method to a class;
• explain the effect of adding implements Comparable<...> to a class declaration;
• be able to give an example of two classes with the same attributes and behaviours, but

differing state representations.

Due Date

The completed lab assignment is due Friday, 2023-01-27 by the beginning of lecture.

Hand-In format

In this laboratory assignment, there are multiple places where correctly completing the lab
means creating code that does not compile. Please be sure to capture the results of each failure,
and submit them with the rest of your assignment.

If the failures are compile-time failures, you should be able to capture the failure text from the
compiler window in your IDE, or redirect javac output to a text (.txt) file.

If the failures are run-time failures, you should be able to capture the failure text from the run
window in your IDE, or redirect java output to a text file.

Put the error outputs in the top-level of the .jar or zip-file that you submit. You may also
create an answers.txt file if that helps communicate what you are doing.

There are multiple packages that you need to create for this assignment, as described be-
low. Figure 3 on page 5 summarizes them.

© 2016–2023 David Casperson. This document may
be freely copied, provided that this copyright notice is

preserved.



UNBC CPSC 101

Time Class — version 1

Write a simple Time class with whose state consists of three private member variables rep-
resenting the hours, the minutes, and the seconds. Put your Time class in a package called
version1 .

It should have the methods specified in Figure 1 on the next page.

⇒ Write a test class that uses the various methods of the Time class to show that they work. When
testing this version, the test code and the time class code should be in different directories, and
the test code should contain an “import version1.Time;” statement.1 Be sure to test setting
hours, minutes, or seconds outside of the usual range to see what happens.

Show that you can convert a Time to a String without writing additional code: for instance
“System.out.println("The time is"+t)” should work for a Time t.

Time Class — version 2

Package this version in a package called “version2”.

This version should have identical public method signatures and testing, but each Time object
should have a single member variable that represents the number of seconds since midnight.

⇒ In the code comment before this Time class, comment on which methods are easier, and which
methods are more difficult for this version.

⇒ Again, write a test class that uses the various methods of the Time class to show that they work.

Theory

Be sure that you have read the chapter about interfaces of the Big Java: Early Objects text.

Sorting Experiments (version1b and verion2b)

Using your version 1 and version 2 Time classes, attempt to sort a Time [] array using java.

util.Arrays.sort. This will produce an error.

⇒ Capture the precise error message. Does the error occur at compile or run time?

Now create new packages version1b and version2b that are the same as version1 and
version2 except that the class starts with

public class Time implements Comparable<Time> { ...

1You may choose to use deeper packaging, for instance, import lab3.version1.Time; . The same remark applies
for all of the versions.

Laboratory Assignment Time Classes • 2



UNBC CPSC 101

The various classes should all have the following public methods unless otherwise specified.
• Constructors

◦ Time() (creates midnight),

◦ Time(h,s,m), and

◦ Time(Time t) (initialize from another Time object).

• Accessor methods

◦ getHour,

◦ getMinute, and

◦ getSecond

that return the corresponding value from the object. The hours should be between 0

and 23, and the minutes and seconds should be between 0 and 59.
• Mutator methods

◦ setHour,

◦ setMinute, and

◦ setSecond

to set the corresponding attributes of a Time object. These should ensure that the re-
sulting time is legitimate. Decide and document what happens when you, say set the
number of seconds to 75.

• A mutator method

◦ public void advanceBy(int seconds) { ... }

that changes the time by a given number of seconds.
• A method

◦ public String toString() { ... }

that produces a string like ”22:03:12”. The hours should be between 0 and 23, and the
minutes and seconds should be between 0 and 59.

• A method

◦ public int compareTo(Time t) { ... }

that produces the number of seconds from t to this. That is,
t.advanceBy(this.compareTo(t)) should set t to the same time as this.

• A method

◦ public boolean equals(Time another) { ... }

that returns true if and only if the times have the same value.

Figure 1: Time class features

Laboratory Assignment Time Classes • 3



UNBC CPSC 101

public interface TimeInterface

{

int getHour() ;

int getMinute() ;

int getSecond() ;

}

Figure 2: Time interface specification

Repeat the sorting experiment. (It should now work).

⇒ Explain your test results.

Implementing your own interface (version1c and verion2c)

Create an interface TimeInterface that looks like Figure 2 in a separate .java file. Write
test code to determine something like

TimeInterface ti = new version2.Time(12,30,0) ;

works “out of the box”. (It shouldn’t.)

⇒ Capture the error message.

⇒ Create new packages version1c and version2c with Time classes that explicitly
“implements TimeInterface”. Now test code like

TimeInterface ti = new version2c.Time(12,30,0) ;

works. (It should.)

⇒ Explain your results.

⇒ What follows is a sequence of questions about how your code works. For each question,
ensure that there is output in your script file that shows the answer to the question. Com-
ment on why you get the results that you do.

• Can you create a TimeInterface array that contains a mixture of version1c.Time and
version2c.Time objects?

• What happens with code like?

TimeInterface ti = new version2c.Time(12,30,0) ;

System.out.println(ti.getSecond()) ;

• What happens with code like?

TimeInterface ti = new version2c.Time(12,30,0) ;

ti.setSecond(12) ;

System.out.println(ti.getSecond()) ;

• What happens with code like?

Laboratory Assignment Time Classes • 4



UNBC CPSC 101

TimeInterface ti = new version2c.Time(12,30,0) ;

System.out.println(ti) ; // Do you expect a hex address?? Why?

⇒ Explain your results.

Here is a list summarizing the packages to create:

version1 A version with separate variables for hours, minutes, seconds.

version2 A version with the same attributes and behaviours as version1, but which uses a
single variable tracking the time since midnight.

version1b version1 with an added “implements Comparable<Time>”.

version1c version1 with an added “implements TimeInterface”.

version2b version2 with an added “implements Comparable<Time>”.

version2c version2 with an added “implements TimeInterface”.

package(s) for test drivers All of the public static void main(...)’s should be in a pack-
age separate from the list above. Having the various test classes in the same package
is acceptable. It is also acceptable to put TimeInterface.java in the appropriate test
package(s).

All of the package names may be nested deeper, for instance, lab3.version2c.

Figure 3: Packages to create in Lab 3

Laboratory Assignment Time Classes • 5


